Imaging magnetic textures with a quantum microscope

Aurore Finco

Laboratoire Charles Coulomb Team Solid-State Quantum Technologies (S2QT)

CNRS and Université de Montpellier, Montpellier, France

WOLTE 15, June 6th 2022

slides available at https://magimag.eu

Domain wall

Domain wall

Spin spiral

Domain wall

Spin spiral

Skyrmion

Domain wall

Spin spiral

↑ →*7***↑** →*7*

Skyrmion

Biskyrmion

Skyrmion tube

Intermediate skyrmion

Chiral bobber

Higher-order skyrmion

Hopfion

B. Göbel et al. Phys. Rep. 895 (2021)

Bimeron

... in various hosting materials

Metallic multilayers

Well-controlled sputter growth High tunability

Antiferromagnets

Robustness Large switching speed

Multiferroics

Electric control of the magnetic state

 $\vec{\mathsf{P}} \leftrightarrow$

van der Waals heterostructures

Stacking of magnetic and non-magnetic layers with different properties

To study these magnetic objects and materials, we need **imaging techniques**.

Challenges:

- Nanoscale objects
- Low net magnetic moment
- Lack of stability under ambient conditions

To study these magnetic objects and materials, we need **imaging techniques**.

Challenges:

- Nanoscale objects
- Low net magnetic moment
- Lack of stability under ambient conditions

Requirements:

- Nanoscale spatial resolution
- Very high sensitivity
- Broad range of working conditions
- Table top

To study these magnetic objects and materials, we need **imaging techniques**.

Challenges:

• ...

- Nanoscale objects
- Low net magnetic moment
- Lack of stability under ambient conditions

Techniques available:

- Magnetic force microscopy
- Scanning transmission X-ray microscopy
- Lorentz transmission electron microscopy
- Spin polarized scanning tunneling microscopy
- Scanning NV-center microscopy

Requirements:

- Nanoscale spatial resolution
- Very high sensitivity
- Broad range of working conditions
- Table top

To study these magnetic objects and materials, we need **imaging techniques**.

Challenges:

- Nanoscale objects
- Low net magnetic moment
- Lack of stability under ambient conditions

Requirements:

- Nanoscale spatial resolution
- Very high sensitivity
- Broad range of working conditions
- Table top

Techniques available:

- Magnetic force microscopy \rightarrow not sensitive enough for antiferromagnets
- Scanning transmission X-ray microscopy \rightarrow synchrotron, samples on membranes
- Lorentz transmission electron microscopy → samples on membranes
- Spin polarized scanning tunneling microscopy \rightarrow UHV, low T, conductive samples
- Scanning NV-center microscopy

To study these magnetic objects and materials, we need **imaging techniques**.

Challenges:

- Nanoscale objects
- Low net magnetic moment
- Lack of stability under ambient conditions

Requirements:

- Nanoscale spatial resolution
- Very high sensitivity
- Broad range of working conditions
- Table top

Techniques available:

- Magnetic force microscopy \rightarrow not sensitive enough for antiferromagnets
- Scanning transmission X-ray microscopy \rightarrow synchrotron, samples on membranes
- Lorentz transmission electron microscopy → samples on membranes
- Spin polarized scanning tunneling microscopy \rightarrow UHV, low T, conductive samples
- Scanning NV-center microscopy

Scanning NV center microscopy

Principle: Combine a scanning probe microscope with a tiny quantum sensor

B. M. Chernobrod et al. J. Appl. Phys. 97 (2004), 014903

- Atomic force microcope for spatial resolution
- High sensitivity to perturbations of the quantum system
- Sensor: point defect in a semiconductor

Scanning NV center microscopy

Principle: Combine a scanning probe microscope with a tiny quantum sensor

B. M. Chernobrod et al. J. Appl. Phys. 97 (2004), 014903

- Atomic force microcope for spatial resolution
- High sensitivity to perturbations of the quantum system
- Sensor: point defect in a semiconductor

NV center in diamond

Outline

Principle of scanning NV microscopy

Some examples

Topological defects in a multiferroic

Outline

Principle of scanning NV microscopy

Some examples

Topological defects in a multiferroic

- Optical manipulation and reading
- Ambient conditions

Nitrogen-Vacancy defect in diamond

- Optical manipulation and reading
- Ambient conditions

Spin-dependent fluorescence

Nitrogen-Vacancy defect in diamond

- Optical manipulation and reading
- Ambient conditions

Spin-dependent fluorescence dark = $|\pm 1\rangle$ 2.87 GHz 0 NV ground state spin S = 1green laser excitation NV polarized in $|0\rangle$

- Optical manipulation and reading
- Ambient conditions

- Optical manipulation and reading
- Ambient conditions

- Optical manipulation and reading
- Ambient conditions

- Optical manipulation and reading
- Ambient conditions

Collaboration: C2N, Palaiseau (T. Devolder)

Collaboration: C2N, Palaiseau (T. Devolder)

Collaboration: C2N, Palaiseau (T. Devolder)

Collaboration: C2N, Palaiseau (T. Devolder)

Collaboration: C2N, Palaiseau (T. Devolder)

Collaboration: C2N, Palaiseau (T. Devolder)

Diamond AFM tip

Implanted single NV center

Implanted single NV center

Implanted single NV center

Implanted single NV center

Implanted single NV center

Outline

Principle of scanning NV microscopy

Some examples

Topological defects in a multiferroic

Collaboration: Institut Néel, Grenoble (A. Purbawati, J. Coraux, N. Rougemaille)

CrTe₂ 2D ferromagnet at room temperature with in-plane magnetization

F. Fabre et al. Phys. Rev. Mat. 5 (2021), 034008

Collaboration: Institut Néel, Grenoble (A. Purbawati, J. Coraux, N. Rougemaille)

CrTe₂ 2D ferromagnet at room temperature with in-plane magnetization

Collaboration: Institut Néel, Grenoble (A. Purbawati, J. Coraux, N. Rougemaille)

CrTe₂ 2D ferromagnet at room temperature with in-plane magnetization

Collaboration: Institut Néel, Grenoble (A. Purbawati, J. Coraux, N. Rougemaille)

CrTe₂ 2D ferromagnet at room temperature with in-plane magnetization

F. Fabre et al. Phys. Rev. Mat. 5 (2021), 034008

Collaborations: UMR CNRS/Thales, Palaiseau (W. Legrand, K.Bouzehouane, N. Reyren, V. Cros) C2N, Palaiseau (J.-P. Adam, J.-V. Kim)

W. Legrand et al. Nat. Mat. 19 (2020), 34

Collaborations: UMR CNRS/Thales, Palaiseau (W. Legrand, K.Bouzehouane, N. Reyren, V. Cros) C2N, Palaiseau (J.-P. Adam, J.-V. Kim)

W. Legrand et al. Nat. Mat. 19 (2020), 34

Domain wall

0.85 0.9 0.95 1.0 PL norm. A. Finco et al. Nat. Commun. 12 (2021), 767

Collaborations: UMR CNRS/Thales, Palaiseau (W. Legrand, K.Bouzehouane, N. Reyren, V. Cros) C2N, Palaiseau (J.-P. Adam, J.-V. Kim)

W. Legrand et al. Nat. Mat. 19 (2020), 34

A. Finco et al. Nat. Commun. 12 (2021), 767

Collaborations: UMR CNRS/Thales, Palaiseau (W. Legrand, K.Bouzehouane, N. Reyren, V. Cros) C2N, Palaiseau (J.-P. Adam, J.-V. Kim)

W. Legrand et al. Nat. Mat. 19 (2020), 34

A. Finco et al. Nat. Commun. 12 (2021), 767

Collaborations: UMR CNRS/Thales, Palaiseau (W. Legrand, K.Bouzehouane, N. Reyren, V. Cros) C2N, Palaiseau (J.-P. Adam, J.-V. Kim)

A. Finco et al. Nat. Commun. 12 (2021), 767

Collaborations: UMR CNRS/Thales, Palaiseau (W. Legrand, K.Bouzehouane, N. Reyren, V. Cros) C2N, Palaiseau (J.-P. Adam, J.-V. Kim)

Outline

Principle of scanning NV microscopy

Some examples

Topological defects in a multiferroic

Bismuth ferrite, a room-temperature multiferroic

Electric polarization

Paraelectric phase (T>1100 K)

G. Catalan et al. Adv. Mater. 21 (2009), 2463-2485

Bismuth ferrite, a room-temperature multiferroic

Electric polarization

Ferroelectric phase (T<1100 K)

G. Catalan et al. Adv. Mater. 21 (2009), 2463-2485

Bismuth ferrite, a room-temperature multiferroic

Electric polarization

Ferroelectric phase (T<1100 K)

G. Catalan et al. Adv. Mater. 21 (2009), 2463-2485

Magnetism

The effects of magnetoelectric coupling in BiFeO₃

The effects of magnetoelectric coupling in BiFeO₃

M. Ramazanoglu et al. Phys. Rev. Lett. 107 (2011), 207206

The effects of magnetoelectric coupling in BiFeO₃

M. Ramazanoglu et al. Phys. Rev. Lett. 107 (2011), 207206

Imaging the cycloidal modulation in a bulk BiFeO₃ crystal

Collaborations: UMR CNRS/Thales, Palaiseau (V. Garcia, S. Fusil) CEA SPEC, Gif-sur-Yvette (J.-Y. Chauleau, M. Viret)

A. Finco et al. Phys. Rev. Lett. 128 (2022), 187201

Rotation of the cycloid propagation direction measured in real space...

Rotation of the cycloid propagation direction measured in real space...

Resonant X-ray scattering

Resonant X-ray scattering

Polar plot of $\frac{2\pi}{\lambda}$ vs \vec{k} direction

Resonant X-ray scattering

Polar plot of $\frac{2\pi}{\lambda}$ vs \vec{k} direction

Resonant X-ray scattering

Polar plot of $\frac{2\pi}{\lambda}$ vs \vec{k} direction

Resonant X-ray scattering

Polar plot of $\frac{2\pi}{\lambda}$ vs \vec{k} direction

Surface effect? Only \vec{k}_1 seen by neutrons

D. Lebeugle et al. Phys. Rev. Lett. 100 (2008), 227602

Topological defects in lamellar systems

General ordered medium

Order parameter

non-uniform, smoothly varying in space

Topological defects in lamellar systems

Topological defects in lamellar systems

except at singular regions of lower dimensionality \rightarrow topological defects

disclination winding number = 1

disclination winding number = -1

N. D. Mermin. Rev. Mod. Phys. 51 (1979), 591

Universal patterns in lamellar systems

Block copolymer

Period 40 nm

🖥 T. A. Witten. Phys. Today 43 (1990), 21

Liquid crystals Period 800 nm

Y. Bouligand. Dislocations in solids (1983), Chap. 23

BiFeO₃ magnetic cycloid Period 64 nm

A. Finco et al. Phys. Rev. Lett. 128 (2022), 187201

Ferrimagnetic garnet

Period 8 µm

🗟 M. Seul et al. Phys. Rev. A 46 (1992), 7519

FeGe magnetic helix Period 70 nm

P. Schönherr et al. Nat. Phys. 14 (2018), 465

Fluid diffusion Period 250 μm

Q. Ouyang et al. Chaos 1 (1991), 411

Identification of these topological defects in BiFeO₃

 $+\pi$ -disclination

 $-\pi$ -disclination

Edge dislocation

Identification of these topological defects in BiFeO₃

 $+\pi$ -disclination

Edge dislocation

Perspective: electrical control?

Summary

NV center magnetometry

- highly sensitive
- nanoscale
- quantitative
- non-perturbative
- versatile

Summary

NV center magnetometry

0.9 0.95 1.0 norm. PL

- highly sensitive
- nanoscale
- quantitative
- non-perturbative
- versatile

Acknowledgments

L2C, Montpellier

Florentin Fabre, Angela Haykal, Rana Tanos, Maxime Rollo, Pawan Kumar, Saddem Chouaieb, Waseem Akhtar, Isabelle Philip, Vincent Jacques

UMR CNRS/Thales, Palaiseau

Pauline Dufour, Vincent Garcia, Stéphane Fusil William Legrand, Fernando Ajejas, Karim Bouzehouane, Nicolas Reyren, Vincent Cros

C2N, Palaiseau

Jean-Paul Adam, Thibaut Devolder, Joo-Von Kim

SPEC, CEA Gif-sur-Yvette Jean-Yves Chauleau, Michel Viret

Synchrotron Soleil

Nicolas Jaouen

Institut Néel Anike Purbawati, Johann Coraux, Nicolas Rougemaille

European Research Council Established by the European Commission

