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•Measurement of the 3D magnetic structuredown to the atomic scale
•Manipulation of the magnetic state

Main findings
• Cycloidal spin spirals with a unique rotational sensepropagate along the dislocation lines in the triple layer Feon Ir(111).
• Variations of the strain relief in the triple layer Fe onIr(111) can change the spin spiral periods via largemodifications of the effective exchange coupling.
• The spin spiral periods increase significantly between 8 Kand room temperature. This can be modeled by coupledmagnetic layers with different interaction strengths.
• Skyrmions appear in magnetic field. They can reliably bewritten and deleted using electric field.

Chiral magnetic order at low temperature in the triple layer Fe on Ir(111)
Reconstructed Fe film
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• A dense dislocation line network forms to relieve theepitaxial strain.
• The lines are oriented along the high-symmetry [1̄12]directions of the fcc(111) surface.
• Two types of lines can be distinguished: double lines andsingle lines.

Homogeneous spin spirals along the dislocation lines
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• Cycloidal spin spirals propagate along the dislocation lines.
• Their periods are between 3 and 4 nm in the double line areas andbetween 5 and 10 nm in the single line areas.
• They have a sinusoidal shape, indicating that themagnetic anisotropyis small. It is thus neglected in the following.

Skyrmions and domain walls in magnetic field
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• Skyrmions are created in magnetic field inthe double line areas.
• In the single line areas, only 360° domainwalls can be found.
• This could be explained by the differentpinning properties of the two types of lines.

Influence of strain relief on the spinspiral periods
Film structure
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Zigzag-shaped spinspiral wavefrontbecause of thealternating orientationof the bcc-like unit cells.

First layer Second layer (bcc-like)Third layer: bcc-like lines bcc(110)-like unit cell
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The fixed orientationof the bcc-like unit cellsproduces a straightand canted wavefront.

Effect of the strain relief on the effective exchangecoupling
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Impact on the transition field
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Field swept up, thusthe transition fieldis overestimatedbecause ofhysteretic effects.
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Temperature-induced increase of thespin spirals periods
Improved thermal stability
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• The spiral wavefronts become straightand perpendicular to the lines.
• The quadruple layer Fe (ferromagneticat low temperature) behaves thesame as the triple layer Fe.

Vanishing ofthe magneticcontrast
•Monolayer Fe: 28 K PRL, 113, 077202 (2014)
•Double layer Fe: between 150 and 200 K
• Triple layer Fe: above room temperature

Theoretical modeling of the period increase
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• We use different parameters in the three layers.
• The mean field order parameter 〈Sp (k)〉 decreasesfaster with temperature in the first and secondlayers than in the third one. This shifts the minimumof the free energy towards larger periods.
• Good agreement between experiments, mean fieldcalculations and Monte Carlo simulations.

Electric field switching of magneticskyrmions
Skyrmion structure
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In-plane sensitivemeasurements allow todetermine the full 3Dspin structure
Reliable switching with an STM tip
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The skyrmions can bewritten and deletedby voltage ramps up to
± 3 V using an out-of-planesensitive Cr bulk tip.

Role of electric field
The switching is also possiblewith a non magnetic W tip.

Parallel plates model
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The linear behavior of the threshold voltageUtwith thetip-sample distance d demonstrates the dominant roleof the electric field in the switching mechanism.
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