UH

Modifying non-collinear magnetism with strain, temperature and electric field

Aurore Finco¹, Pin-Jui Hsu¹, Levente Rózsa^{1,2}, André Kubetzka¹, Niklas Romming¹, Lorenz Schmidt¹, Elena Vedmedenko¹, Kirsten von Bergmann¹, and Roland Wiesendanger¹

¹Department of Physics, University of Hamburg, D-20355 Hamburg, Germany

²Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary

Fe on Ir(111)

Spin-polarized STM

Cr bulk

or

Fe coated W

- Measurement of the 3D magnetic structure down to the atomic scale
 - Manipulation of the magnetic state
- high current $I_{SP} = I_0 \left(1 + P_{sample} P_{tip} \cos \left(\vec{M}_{sample}, \vec{M}_{tip} \right) \right)$ low current

Main findings

- Cycloidal spin spirals with a unique rotational sense propagate along the dislocation lines in the triple layer Fe on Ir(111).
- Variations of the strain relief in the triple layer Fe on Ir(111) can change the spin spiral periods via large modifications of the effective exchange coupling.
- The spin spiral periods increase significantly between 8 K and room temperature. This can be modeled by coupled magnetic layers with different interaction strengths.
- Skyrmions appear in magnetic field. They can reliably be written and deleted using electric field.

Chiral magnetic order at low temperature in the triple layer Fe on Ir(111)

Reconstructed Fe film

- A dense dislocation line network forms to **relieve the** epitaxial strain.
- The lines are oriented along the high-symmetry [112] directions of the fcc(111) surface.
- Two types of lines can be distinguished: double lines and single lines.

Influence of strain relief on the spin spiral periods

Homogeneous spin spirals along the dislocation lines

- Cycloidal spin spirals propagate along the dislocation lines.
- Their periods are between 3 and 4 nm in the double line areas and between 5 and 10 nm in the single line areas.
- They have a sinusoidal shape, indicating that the **magnetic anisotropy** is small. It is thus **neglected** in the following.

• Monolayer Fe: 28 K PRL, 113, 077202 (2014)

Skyrmions and domain walls in magnetic field

- Skyrmions are created in magnetic field in the double line areas.
- In the single line areas, only **360° domain** walls can be found.
- This could be explained by the **different pinning** properties of the two types of lines.

Temperature-induced increase of the spin spirals periods arXiv:1703.10849

Electric field switching of magnetic

skyrmions

Nat. Nanotechnology, 12, 123-127 (2017)

PRB, 94, 214402 (2016)

Film structure

2.715 Å — First layer Second layer: — bcc-like — fcc — hcp

Third layer: bcc-like

Zigzag-shaped spin spiral wavefront because of the alternating orientation of the **bcc-like unit cells**.

The **fixed** orientation

produces a **straight**

and **canted** wavefront.

First layer 💛 Second layer (bcc-like) Third layer: bcc-likelinesbcc(110)-like unit cell

Effect of the strain relief on the effective exchange coupling

1D model:
$$\mathcal{E} = A \sum_{i} \left(\frac{\partial \mathbf{m}}{\partial x_{i}}\right)^{2} + D \left(m_{z}\frac{\partial m_{x}}{\partial x} - m_{x}\frac{\partial m_{z}}{\partial x}\right) - M_{s}Bm_{z}$$

$$\widehat{E} \stackrel{10}{\circ} \stackrel{1}{\frown} \stackrel{2.2}{\bullet} \stackrel{1}{\frown} \stackrel{2.2}{\bullet} \stackrel{1}{\bullet}$$

Improved thermal stability

Vanishing of the magnetic contrast

43 K

50

• The periods increase from 3 to 10 nm at 8 K to 65 nm at room temperature. • The spiral wavefronts become straight and perpendicular to the lines. • The quadruple layer Fe (ferromagnetic at low temperature) behaves the same as the triple layer Fe.

Ir(111) substrate, fcc

Theoretical modeling of the period increase

• Experimental data — Mean field (rescaling factor 0.71) 70 ▲ Monte Carlo 60

> Vanishing of the double layer spin spirals

Skyrmion structure

B = -2.5 T• Double layer Fe: **between 150 and 200 K** • Triple layer Fe: above room temperature

In-plane sensitive measurements allow to determine the full 3D spin structure

Reliable switching with an STM tip

The skyrmions can be written and deleted by **voltage ramps** up to \pm 3 V using an out-of-plane sensitive Cr bulk tip.

• Good agreement between experiments, mean field calculations and Monte Carlo simulations.

Role of electric field

The switching is also possible with a **non magnetic W tip**.

The **linear** behavior of the threshold voltage U_t with the tip-sample distance *d* demonstrates the **dominant role** of the electric field in the switching mechanism.