

Probing the Internal Texture of Domain walls and Skyrmions through Spin Waves with a Quantum Sensor

Aurore Finco¹, Pawan Kumar¹, Van Tuong Pham², Joseba Urrestarazu², Maxime Rollo¹, Olivier Boulle², Joo-Von Kim ³, Vincent Jacques ¹

¹Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, France
²Université Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG-SPINTEC, Grenoble, France
³Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, Palaiseau, France

Principle of the measurement

Main results

- We can determine the chirality of Néel domain walls from the intensity of the detected magnetic noise.
- We can determine if skyrmions are of Bloch or Néel type from the magnetic noise pattern along their contour.
- We can determine the chirality of Néel skyrmions from the intensity of the detected magnetic noise.

Relaxometry imaging on a synthetic antiferromagnet

Analysis of the skyrmion contour

The optical contrast results from an **acceleration of the NV spin relaxation** caused by **spin waves confined in the walls** with frequency matching the NV center resonance. Such spin waves are hardly present in the domains because of the gap.

Signal from domain walls

The chirality (left or right) of the Néel wall can be determined from the **intensity of the detected magnetic noise**, which can hardly be done from the stray field maps.

The type of skyrmions (Bloch/Néel) can be determined from the **spatial distribution of the detected magnetic noise**, and the chirality of Néel skyrmions significantly modifies the **noise intensity**.