

Imaging topological defects in a non-collinear antiferromagnet

Aurore Finco¹, Angela Haykal¹, Stéphane Fusil², Pawan Kumar¹, Pauline Dufour², Anne Forget³, Dorothée Colson³, Jean-Yves Chauleau³, Michel Viret³, Nicolas Jaouen⁴, Vincent Garcia², and Vincent Jacques¹

¹Laboratoire Charles Coulomb, Université de Montpellier, CNRS, 34095 Montpellier, France ²Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France ³SPEC, CEA, CNRS, Université Paris-Saclay, 91191 Gif sur Yvette, France ⁴Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France

A. Finco et al. Phys. Rev. Lett. 128 (2022), 187201

The cycloid in multiferroic BiFeO₃

- Magnetoelectric coupling
- \rightarrow antiferromagnetic cycloid \rightarrow compensated!
- Dzyaloshinskii-Moriya interaction
 - \rightarrow spin density wave \rightarrow stray field!

M. Ramazanoglu et al. Phys. Rev. Lett. 107 (2011), 207206

THALES

Cea

Spec

Scanning NV center magnetometry

Quantitative analysis of the cycloid

Topological defects in lamellar systems

Block copolymer Period 40 nm

T. A. Witten. Phys. Today 43 (1990), 21

A. Finco et al. Phys. Rev. Lett. 128 (2022), 187201 P. Schönherr et al. Nat. Phys. 14 (2018), 465

BiFeO₃ magnetic cycloid

Period 64 nm

Liquid crystals Period 800 nm

Y. Bouligand. Dislocations in solids (1983)

Ferrimagnetic garnet Period 8 µm

M. Seul *et al.* Phys. Rev. A 46 (1992), 7519

FeGe magnetic helix Period 70 nm

Fluid diffusion Period 250 µm

📄 Q. Ouyang et al. Chaos 1 (1991), 411

Rotation of the cycloid wavevector in bulk crystals

Identification of topological defects in bulk BiFeO₃

 \vec{k} direction

 $-\pi$ -disclination winding number -1/2

 \vec{k} direction

Edge dislocation

Combination of $+\pi$ - and $-\pi$ -disclinations

winding number 0

Surface effect? Only $\vec{k_1}$ seen by neutrons

D. Lebeugle et al. Phys. Rev. Lett. 100 (2008), 227602

Topological description of defects

except at singular regions of lower dimensionality \rightarrow topological defects

N. D. Mermin. *Rev. Mod. Phys.* 51 (1979), 591

European Research Council Established by the European Commissior