Imaging antiferromagnetic states with scanning NV magnetometry

Angela Haykal, Waseem Akhtar, Aurore Finco, Vincent Jacques

Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, France

Johanna Fischer, Cécile Carrétéro, Manuel Bibes, Stéphane Fusil, Vincent Garcia

Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris Saclay, Palaiseau, France

Théophile Chirac, Jean-Yves Chauleau, Michel Viret

SPEC, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France

Magnetoelectric coupling

High performance, low power devices

Outline

NV center magnetometry

BiFeO₃, a room temperature multiferroic

Effect of epitaxial strain on the cycloid in BiFeO_3 thin films

Increasing strain

The Nitrogen Vacancy (NV) center in diamond

- Defect consisting of a N atom and a vacancy inside the C lattice
- Equivalent to an artificial atom with levels inside the diamond gap
- Detection of the photoluminescence of single emitters at room temperature

A. Gruber et al. Science 276 (1997), 2012–2014

Atomic-size magnetic field sensors

Spin-dependent fluorescence

Atomic-size magnetic field sensors

Optically Detected Magnetic Resonance

Atomic-size magnetic field sensors

Spin-dependent fluorescence

Optically Detected Magnetic Resonance

Experimental setup

Electric polarization

Paraelectric phase (T>1100 K)

Electric polarization

Ferroelectric phase (T<1100 K)

Electric polarization

Magnetism

G-type antiferromagnet

Ferroelectric phase (T<1100 K)

Known effect of epitaxial strain on the cycloid

D. Sando et al. Nature Materials 12 (2013), 641-646

The type I cycloid

64 nm

 $\lambda_{\rm IP} = \sqrt{2}\lambda_{\rm bulk}$ 90 nm

The type II cycloid

The type II cycloid

Virgin state of the films

tensile

Virgin state of the films

X-ray diffraction

DyScO₃

type I cycloid \vec{k}_1

X-ray diffraction

DyScO₃

type I cycloid \vec{k}_1

type II cycloid \vec{q}_2, \vec{q}_3

Virgin state of the films

Written domains

Summary

- NV magnetometry is the right tool to probe the small uncompensated magnetic moments in BiFeO₃
- New exploration of the phase diagram of BiFeO₃ thin films using real-space imaging
- Demonstration of the ability to manipulate electrically the magnetic cycloid