Imaging spin textures in synthetic antiferromagnets with quantum single spin relaxometry

Aurore Finco, Angela Haykal, Florentin Fabre, Saddem Chouaieb, Rana Tanos, Waseem Akhtar, Vincent Jacques Laboratoire Charles Coulomb, Montpellier, France

William Legrand, Fernando Ajejas, Yanis Sassi, Karim Bouzehouane, Nicolas Reyren, Vincent Cros, Albert Fert Unité Mixte de Physique CNRS/Thalès, Palaiseau, France

Joo-Von Kim, Thibaut Devolder

Centre de Nanosciences et de Nanotechnologies (C2N), Palaiseau, France

Scanning NV magnetometry

 $2 \, \mu m$

Mami

Scanning NV magnetometry

Spin-dependent fluorescence

Spin-dependent fluorescence

Optically Detected Magnetic Resonance

Optically Detected Magnetic Resonance

Optically Detected Magnetic Resonance

J.-Y. Chauleau et al. Nat. Mater. (2019), 1-5

 \rightarrow Sensitivity of a few $\mu T/\sqrt{Hz}$, investigation of antiferromagnets

Quenching of the photoluminescence at high field

Mixing of the spin states

Quenching of the photoluminescence at high field

Mixing of the spin states

J.-P. Tetienne et al. New J. Phys. 14 (2012), 103033

Quenching of the photoluminescence at high field

Mixing of the spin states

J.-P. Tetienne et al. New J. Phys. 14 (2012), 103033

G. Rana et al. submitted soon (2019)

 \rightarrow Fast and simple investigation of ferromagnets

Noise detection:

\rightarrow Johnson noise

S. Kolkowitz et al. Science 347 (2015), 1129–1132
A. Ariyaratne et al. Nat. Commun. 9 (2018), 2406

\rightarrow Fluctuating magnetic particles

J.-P. Tetienne et al. Phys. Rev. B 87 (2013), 235436

D. Schmid-Lorch et al. Nano Lett. 15 (2015), 4942–4947

\rightarrow Spin waves

T. van der Sar et al. Nat. Commun. 6 (2015), 7886
C. Du et al. Science 357 (2017), 195–198

Noise detection:

\rightarrow Johnson noise

S. Kolkowitz et al. Science 347 (2015), 1129–1132
A. Ariyaratne et al. Nat. Commun. 9 (2018), 2406

\rightarrow Fluctuating magnetic particles

J.-P. Tetienne et al. Phys. Rev. B 87 (2013), 235436

D. Schmid-Lorch et al. Nano Lett. 15 (2015), 4942-4947

\rightarrow Spin waves

T. van der Sar et al. Nat. Commun. 6 (2015), 7886
C. Du et al. Science 357 (2017), 195–198

Theoretical prediction: The difference between the spin waves in domain walls and in magnetic domains could be used to image antiferromagnets.

B. Flebus et al. Phys. Rev. B 98 (2018), 180409

Noise detection:

\rightarrow Johnson noise

S. Kolkowitz et al. Science 347 (2015), 1129–1132
A. Ariyaratne et al. Nat. Commun. 9 (2018), 2406

\rightarrow Fluctuating magnetic particles

J.-P. Tetienne et al. Phys. Rev. B 87 (2013), 235436

D. Schmid-Lorch et al. Nano Lett. 15 (2015), 4942–4947

\rightarrow Spin waves

T. van der Sar et al. Nat. Commun. 6 (2015), 7886
C. Du et al. Science 357 (2017), 195–198

Theoretical prediction: The difference between the spin waves in domain walls and in magnetic domains could be used to image antiferromagnets.

B. Flebus et al. Phys. Rev. B 98 (2018), 180409

Synthetic antiferromagnets

Antiferromagnets: Promising for fast, robust and efficient spintronic devices

AFM coupling $\begin{pmatrix} \uparrow FM$ layer

Fast domain wall motion

R. A. Duine et al. Nat. Phys. 14 (2018), 217–219

S.-H. Yang et al. Nat. Nano. 10 (2015), 221–226

Imaging a domain wall

Imaging a domain wall

0.85 0.9 0.95 1.0 PL norm.

Imaging a domain wall

The stray field of the domain wall is too small to be the reason of the PL decrease

Spin waves in a domain wall

Spin waves have a gapped dispersion inside a magnetic domain but it is gapless in a domain wall \rightarrow more thermally activated magnons!

Tuning the magnetic state in a SAF

Imaging spin spirals...

 \rightarrow Vanishing magnetic anisotropy

Imaging spin spirals...

 \rightarrow Vanishing magnetic anisotropy

Imaging spin spirals...

 \rightarrow Vanishing magnetic anisotropy

... and magnetic skyrmions!

... and magnetic skyrmions!

... and magnetic skyrmions!

Summary

- ► Third imaging mode of scanning NV magnetometry
- Not relying on static stray field but on magnetic noise
- ► Fast, simple, well-suited to study antiferromagnets

Acknowledgments

L2C, Montpellier

Angela Haykal Rana Tanos Saddem Chouaieb Florentin Fabre Waseem Akhtar Vincent Jacques

UMR CNRS/Thales, Palaiseau

William Legrand Fernando Ajejas Yannis Sassi Karim Bouzehouane Nicolas Reyren Vincent Cros Albert Fert

C2N, Palaiseau

Joo-Von Kim Thibaut Devolder

European Research Council Established by the European Commission

