Pymodaq for scanning NV center microscopy

S2QT team, Laboratoire Charles Coulomb, Montpellier

Elias Sfeir, Roméo Beignon, Elijah Wane, Aurore Finco

Pymodays, October 22nd 2024, Lyon

Scanning NV center microscopy

Scanning probe magnetometry technique = we measure **maps of the magnetic stray field** produced by a sample.

Our B field sensor

The nitrogen vacancy (NV) defect in diamond

We have tips made of diamond with a single defect at the end

Basic principle of the measurement

At each pixel of the map :

- i. Sweep the MW excitation frequency (actuator)
- ii. Record the photoluminescence at the same time (detector)
- iii. Extract the position of the resonance
- iv. Obtain the value of B
- v. Move to the next pixel (actuator)

Pymodays, October 2024, Lyon — S2QT team

Now a commercial technique

Qnami ProteusQ

However, we also have two custom-built systems based on Attocube AFMs, including a cryogenic setup

→They need a control software!

Outline

- 1.Our experimental setup
- 2.Welcome to our dashboard
- 3.Review of our PyMoDAQ modules
 - Newport Picomotor 8742
 - Rohde Schwarz SMB100A
 - NI DAQmx controlled scanners
 - NI DAQmx based single photon counter
 - Our custom ODMR detector

4.Demo

Our experimental setup

Our experimental setup

Atomic force microscope

Optical confocal microscope

Attocube scanners and steppers

Akiyama probe

Attocube ASC500 controller

Single photon

counter (APD)

card

Acousto-optic

Steering mirror

ohde Schwarz SMB100 MW source

Microwave excitation

The atomic force microscope

- Steppers for coarse positioning: manual control
- Scanners :
 - X, Y scanners driven with the analog output of the NI card
 - Z scanner is driven by the Attocube AFM controller which takes care of the feedback loop
- Mostly actuators, but we also read the topography data from the AFM controller through the NI card

Plan for the future: control the sample XY scanners with the Attocube scan controller ASC500 and PyMoDAQ

Daisy: Attocube control software for the AFM

Image:	AFM - Daisy @ ASC500 SPM Controller V2					- 0 ×
de mil in de de de marker la line de la celation de	File Window Displays Server Settings Help					
Image: Since Sinc	🖙 🖬 🛪 📴 🖾 🎘 🥬 👔 🔀 Scan 🔄 🛍 (🔁 🗿 🔌 🗶 💉 🖉				
Image: Section of the section of t	AFM AFM At Alone Frame View Stand Alone Frame	e View 🔤 Line View				
I work		Z Control	Frame/Line Views			
Same Ch I and I an	PT Output Active 🔵		Frame View		Frame View	
Scare Cri			Zoutiny		Counter	
I Image: Construction of the second of t		Revaci				
Containing Solution <	1		Underground Filter	Off 🔄	Underground Filter	Off 🔄
Construction Construction <td< td=""><td></td><td>HF 1 Ampl 2800</td><td>4300%</td><td></td><td>⇒ 300%</td><td></td></td<>		HF 1 Ampl 2800	4 300%		⇒ 300%	
lang A (mar jak) A kang P (ka / mar jak) A kang P (ka		2500				
See Calorine See To See		305 pm				
he Size To Fix Arr Fits down as To the text To the Size To						
Readers Time 1 Sing Single Kan P Dad Page Sange Time 1 Sing Single Kan P Dad Page P 2058 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		1900				
Sample Time Same Cessle P Totals						
Image: State of the state						
Sepont Multiple Sepont Multiple Image Consistent Multiple Image Consistent Multiple Image Shift Image Consistent Multiple Image Shift Image Consistent Multiple Image Multiple Image Consistent Multiple Image Multiple Image Multi		P 7.016 m				
Sepont Multiple Sepont Multiple Image Consistent Multiple Image Consistent Multiple Image Shift Image Consistent Multiple Image Shift Image Consistent Multiple Image Multiple Image Consistent Multiple Image Multiple Image Multi	<u>30</u>	1000				
Sepont	25	700				
Sepont		I✓ P/I const				
Image limits Image limits <td< td=""><td>20</td><td>Setpoint 100</td><td></td><td></td><td></td><td></td></td<>	20	Setpoint 100				
Image: State in the second control of the second control	15	270.5 mV				
LL LE dont Lever excitation Coarse Path Dual pass Crossink DAC outputs Scan Resonance Line View Frequency Analysis Spec 1 Spec 2 Spec 3 Soft Spec Excitation Acx (p) 96.4357 mV Phase Dode Date Date Date Date Date Date Date Dat		Inv. Polarity		•		
LL LE dont Lever excitation Coarse Path Dual pass Crossink DAC outputs Scan Resonance Line View Frequency Analysis Spec 1 Spec 2 Spec 3 Soft Spec Excitation Acx (p) 96.4357 mV Phase Dode Date Date Date Date Date Date Date Dat	Q.	Slope Comp. Setpoint Mod.	•			
LL LE dont Lever excitation Coarse Path Dual pass Crossink DAC outputs Scan Resonance Line View Frequency Analysis Spec 1 Spec 2 Spec 3 Soft Spec Excitation Acx (p) 96.4357 mV Phase Dode Date Date Date Date Date Date Date Dat	€	Clinning Adjusting		* *		
Plant Lader excitation Coarse Path Dual pass Crossink DAC outputs Scan Resonance Line View Frequency Analysis Spec 1 Spec 2 Spec 3 Soft Spec Excitation Acx (pp) 96.4357 mV Frequency Max 0 <	Q um 10 20 30		<u>e</u> <u>e</u>		QQ	
Excitation Acx (pp) 96.4357 mV Frequency 30.22561 lHz Detection Phase Sensitivity Range 5V Phase Shift 39.43 deg Jay 200 Time 8.465 ms Preamp Mode Auto Auto Status: Status:		4				
Aexc (p) 96.4357 mV Inble Inble Integration Time 1.4ub Phase 0 deg	PLL LF Lockin Lever excitation Coarse Path Dua	al pass Crosslink DAC outputs	Scan Resonance Line View Frequency Analysis Spec	1 Spec 2 Spec 3 Soft Spec		
Aexc (p) 96.4357 mV Prequency 30.223661 Hz Detection 0 deg Sensitivity Range 5 V Phase Shift 9.436 g Data Points [223 Details Data Point Auto Preamp Mode Auto Status: Status: Status: Status: Status: Status: Status: Status: Status: Status: Status: Status: Status: S	Excitation	trol	Start 25 kHz HF 1 Ampl 💌	🚳 👘 🙀 🔀	HF 1 Ampl	🚳 👘 🕷 ĸ
Predency J3.2250 km² Detacion Sensitivity Range 5 v Phase Shift 39.43 deg Lintegration Time 8.468 ms Preamp Mode Auto Vitegration Time 8.468 ms Preamp Mode Auto Statu: 0 Statu: 0 <td></td> <td></td> <td>End 35 kHz</td> <td></td> <td>N N N N N N N N N N N N N N N N N N N</td> <td></td>			End 35 kHz		N N N N N N N N N N N N N N N N N N N	
Detection Sensitivity Range 5V Phase Shift 39.43 deg Integration Time 6.465 ms Preamp Mode Auto • J	Frequency 30.223661 kHz		Data Points 2238			
Sensitivity Range 5 V Phase Shift 19.43 deg Integration Time 8.458 ms Preamp Mode Auto Status: 0 Status: <t< td=""><td></td><td>ack 0</td><td>, , ,</td><td></td><td>3</td><td></td></t<>		ack 0	, , ,		3	
Phase Shift 39.43 deg Auto Phase Preamp Mode Auto Status: Status: S	Sensitivity Range 5 V					
Integration Time Preamp Mode Auto Preamp Mode Auto Status: S					2	
Integration Time 8.468 ms Preamp Mode Auto Status: Image: Status:	Auto Phase					
Preamp Mode Auto	Integration Time 8.468 ms				1	
Start 26 27 28 29 30 51 32 33 34 Http 26 27 28 29 30 51 32 33 34 Http	Preamp Mode Auto					
26 27 28 29 30 31 32 33 34 kHz 26 27 28 29 30 31 32 33 34 kHz			Status:			
26 27 28 29 30 31 32 33 34 kHz 26 27 28 29 30 31 32 33 34 kHz			Start			
			26 27	28 29 30 31 32 33	34 kHz 26 27 28	
			<u></u>			

The confocal microscope

10

The confocal microscope control and detection

Scan the laser beam to adjust the position of the NV defect at the focal point Generate laser pulses to manipulate the NV defect Detect the emitted photons (usually about 100 kcts/s) Count the voltage pulses from the APD and control the mirror's position

NIDAQmx card

The microwave excitation

Welcome to our dashboard!

PyMoDAQ Dashboard: Balbuzard_octobre2024_4_4

Review of modules: Newport picomotor 8742

File Settings Preset Modes Overshoot Modes ROI Modes Remote/Shortcuts Control Extensions ?							
l oaaer	Remote controls	Antenna X	Antenna Y	Antenna 7			
Parameter - Log level	Value DEBUG	• 🐌 🔇 🗆 🛛 📕 🗙 • Antenna X	Solution (1998) Solution (1998)	• 🕞 🕸 🗆 📲 🗙 • Antenna Z			
Loaded presets Preset file Preset file Overshoot file Layout file ROI file Remote file Varuators Init.	single picomotor.xml	Concent value: -29 k	Contract value: -29 k	0 0 </th			
- Antenna Y - Antenna Z	•	Abs. Value	Abs. Value 6 Find Home 0 Set Abs.	Abs. Value			
Detectors Init.	•	Kei Indrement	Rel. Increment	Rel, Increment			
		5 k Set Rel. (-)	10 k Ster Rel. (-)	1k ⊕ SetRel. (-) Stop ?Update Value			
2024/10/17 11:54:52: Pres	et mode (single picomotor.xn						

Review of modules: Newport picomotor 8742

pymodaq_plugins_newport

DAQ_Move_Newport_Picomotor8742

- We use the pylablib driver
- There are 4 axis on the controller, we have to use the Master/Slave mechanism
- Issue: the driver opens the communication when you init the wrapper, which created troubles with the old template
- Solved with the latest version of the template
- Tip: check the current template version when you have an issue with your modules!

Review of modules: Rohde Schwarz SMB100A

pymodaq_plugins_rohdeschwarz

DAQ_Move_RSMWsource

- Hardware communication file adapted from qudi
- We choose that the controlled parameter is the frequency, and you set the power in the settings tree, but you could write a plugin with reverse config
- The unit is weird!
- Main issues come from the device itself, which is not so simple to control for the ODMR later

Review of modules: NIDAQmx controlled scanners

pymodaq_plugins_daqmx

15 μm	C m		ð
ctuator:		DAQmx_MultipleScannerControl	
(©) Initialization		<u> </u>	
urrent value:		<u> </u>	
15 µm			
Parameter	Value		
	value		
 Main Settings: Actuator Settings: 			
- Output channel:	Dev1/ao2		
- Clock channel:	Dev1/ctr1		
- Step size (nm)	100		
- Step time (ms)	100		
- Conversion factor (m		20	
✓ MultiAxes:	7.38-00		
is Multiaxes:	v		
- Status:	Master		
	X		
- Units:	x m		
Epsilon:	1e-08		
	20	5	
Timeout (c)	20		
Timeout (s):			
Bounds:			
✓ Bounds: → Set Bounds:	•		
Bounds:	 ✓ 0 		
✓ Bounds: → Set Bounds:	—		

DAQ_Move_DAQmx_MultipleScannerControl

- Sends analog voltages to any scanners (here Attocube scanners and Newport steering mirror)
- Troubles arrive when we start using the DAQ_scan (cf last year's talk) but the plugin now works (almost) properly
- If you plan to use several scanners together in a scan (x and y for example), they should share a controller (use Master/Slave) for proper timing
- We could get rid of the knm! :)

Review of modules: NIDAQmx based photon counter

pymodaq_plugins_daqmx

	PL counter settings
PL counter	DAQ0D : DAQmx_PLcounter
> • = =	🛤 📂 🔯 🐌 🗙 🐏 💿 🔍
DAQ type:	DAQ0D
Detector:	DAQmx_PLcounter 🔹 🕒
🗌 Do Bkg	Take Bkg
	Pl. counter Pl
	🛷 🚥 🕒 🛤
	B 7 6 5 4 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

DAQ_0DViewer_DAQmx_PLcounter

- Counts the voltage pulses sent by the APD
- Naive counting with simple daqmx functions did not work properly, the number of photons were not correct
- We copied what was done in qudi, using a SemiPeriod Counter Input channel and summing the counts during both halves of the period
- We had to add a clock for the timing

Review of modules: Our custom ODMR detector

pymodaq_plugins_s2qt_odmr

DAQ_1DViewer_ODMR

- Our controller consists in 3 DAQmx objects (counter, clock, analog input) and a MWsource.
- Multiple output:
 - ODMR spectrum (1D)
 - Topography = position of the z scanner (0D)
 - B value, iso-B data (0D)

Working principle

- i. Define a list of frequencies and an acquisition time.
- ii. Send the list to the MW source, and set up a clock with the proper timing
- iii. Define in the NI card a task to read the PL, read the topo and trigger the MW source following this clock

iv. Send the data to the viewer.

Acquisition settings				
- Sweep mode?	☑			
- Number of ranges	1			
Range 1 parameters				
Start (MHz):	2.82e+03			
Stop (MHz):	2.92e+03			
Step (MHz):	1			

Counter settings:	
Count time (ms):	10
Counting channel:	Dev1/ctr0
 Source settings: 	
- Enable?:	✓
Photon source:	/Dev1/PFI8

Further NI card settings	
Clock channel	Dev 1/ctr 1
- Topo channel:	Dev 1/ai0
Sync trigger channel:	/Dev1/PFI13

Fitting

- We need to fit our spectra to optimize our measurements (contrast, linewidth)
- Several functions available: lorentzian and gaussian fits, single or double.
- We want to fit the averaged signal! No easy access to it from inside the DAQ_viewer plugin → dirty workaround for now, ideas?

Iso-B mode

Measure the signal only at 2 MW frequencies to go faster, but get a qualitative map

Demonstration!

File	File Settings Preset Modes Overshoot Modes ReMote/Shortcuts Control Extensions ?						
ODMR viewer	■ + ~ ~ ■ ∧ † 0.8 0.6 0.4 0.2 0	0.1 0.2	0.3 0.4	0.5 0.6	0.7 0.8	0.9 1	
	Scanner Y tip	loader	Remote controls	MW source	Scanner X tip	ODMR settings	
0 Ac	n :tuator: wrent value:	Scanner Y tip Dagma_Multiplesc	cannerControl	Current value:	I source RSMWsource ↓		
Scanner Y sample	15 µm		eScannerControl		Canner X sample	▶	
PL counter settings	PL counter	× 💱 O 오	nne ♥ L Contract viewer 0.6 0.6 0.6 0.7 0.2 0.2 0.1	0.2 0.3 0.4 0.5 Samples (5)	0.6 0.7 0.8 0.9		

The future

- Use the PID extension to readjust the position of the beam on the NV center
- Create a Pulser extension to generate sequences of laser and MW pulses allowing us to control the spin of the NV defect
- Update and improve our data analysis codes with the help of the PyMoDAQ data structure (hello PyMoDAQ v5!)

Our repositories

- https://github.com/Montpellier-S2QT/pymodaq_plugins_s2qt_odmr
- https://github.com/Montpellier-S2QT/pymodaq_plugins_newport
- https://github.com/Montpellier-S2QT/pymodaq_plugins_rohdeschwarz
- https://github.com/Montpellier-S2QT/pymodaq_plugins_daqmx

