Nanoscale magnetic imaging with quantum sensors

Aurore Finco

Laboratoire Charles Coulomb Team Solid-State Quantum Technologies (S2QT)

CNRS and Université de Montpellier, Montpellier, France

Multimag, March 23rd 2023, Lille

slides available at https://magimag.eu

Solid-state quantum technologies team in Montpellier

 \rightarrow Defects in semiconductors, and their use as quantum sensors \rightarrow Ultrawide bandgap semiconductors for deep-UV electronics

Solid-state quantum technologies team in Montpellier

 \rightarrow Defects in semiconductors, and their use as **quantum sensors** \rightarrow Ultrawide bandgap semiconductors for deep-UV electronics

C. Degen et al. Rev. of Mod. Phys. 89 (2017), 035002

C. Degen et al. Rev. of Mod. Phys. 89 (2017), 035002

C. Degen et al. Rev. of Mod. Phys. 89 (2017), 035002

The proposal of Chernobrod and Berman

B. M. Chernobrod et al. J. Appl. Phys. 97 (2004), 014903

- Atomic force microcope for spatial resolution
- High sensitivity to perturbations of the quantum system
- Sensor: point defect in a semiconductor

The proposal of Chernobrod and Berman

B. M. Chernobrod et al. J. Appl. Phys. 97 (2004), 014903

- Atomic force microcope for spatial resolution
- High sensitivity to perturbations of the quantum system
- Sensor: point defect in a semiconductor

NV center in diamond

The NV center in diamond

Nitrogen-Vacancy defect

The NV center in diamond

- Photostable defect
- Spin S=1
- Individual defects can be isolated/implanted
- Ambient conditions

A. Gruber et al. Science 276 (1997), 2012

Spin-dependent fluorescence

Spin-dependent fluorescence

Diamond

Implanted single NV center

Implanted single NV center

Implanted single NV center

Implanted single NV center

Implanted single NV center

Outline

Imaging topological defects in a multiferroic antiferromagnet

A. Finco et al. Phys. Rev. Lett. 128 (2022), 187201

Outline

Imaging topological defects in a multiferroic antiferromagnet

A. Finco et al. Phys. Rev. Lett. 128 (2022), 187201

Detection of magnetic textures through channelled spin waves

A. Finco et al. Nat. Commun. 12 (2021), 767

Outline

Imaging topological defects in a multiferroic antiferromagnet

A. Finco et al. Phys. Rev. Lett. 128 (2022), 187201

Detection of magnetic textures through channelled spin waves

A. Finco et al. Nat. Commun. 12 (2021), 767

Outlook: further sensing possibilities

- Sensing electric field or temperature
- Other defects: boron vacancies in h-BN

P. Kumar et al. Phys. Rev. Appl. 18 (2022), L061002

Bismuth ferrite, a room temperature multiferroic

Electric polarization

Paraelectric phase (T>1100 K)

G. Catalan et al. Adv. Mater. 21 (2009), 2463-2485

Bismuth ferrite, a room temperature multiferroic

Electric polarization

Ferroelectric phase (T<1100 K)

G. Catalan et al. Adv. Mater. 21 (2009), 2463-2485

Bismuth ferrite, a room temperature multiferroic

Electric polarization

Ferroelectric phase (T<1100 K)

G. Catalan et al. Adv. Mater. 21 (2009), 2463-2485

G-type antiferromagnetic phase ($T_N = 643 \text{ K}$)

Magnetism

The effects of magnetoelectric coupling in BiFeO₃

Fully compensated cycloid

 \rightarrow No stray field!

The effects of magnetoelectric coupling in BiFeO₃

Spin density wave Weak uncompensated moment → Small stray field

M. Ramazanoglu et al. Phys. Rev. Lett. 107 (2011), 207206

The effects of magnetoelectric coupling in BiFeO₃

M. Ramazanoglu et al. Phys. Rev. Lett. 107 (2011), 207206

Collaborations: UMR CNRS/Thales, Palaiseau (V. Garcia, S. Fusil) CEA SPEC, Gif-sur-Yvette (J.-Y. Chauleau, M. Viret)

Collaborations: UMR CNRS/Thales, Palaiseau (V. Garcia, S. Fusil) CEA SPEC, Gif-sur-Yvette (J.-Y. Chauleau, M. Viret)

Collaborations: UMR CNRS/Thales, Palaiseau (V. Garcia, S. Fusil) CEA SPEC, Gif-sur-Yvette (J.-Y. Chauleau, M. Viret)

Collaborations: UMR CNRS/Thales, Palaiseau (V. Garcia, S. Fusil) CEA SPEC, Gif-sur-Yvette (J.-Y. Chauleau, M. Viret)

M. Ramazanoglu et al. Phys. Rev. Lett. 107 (2011), 207206

$$\begin{cases} A = \frac{\mu_0 m_{\text{DM}}}{\sqrt{3} a^3} \sinh\left(\frac{ka}{2\sqrt{2}}\right) \\ S = e^{-kz/\sqrt{2}} e^{ik(y-z)/\sqrt{2}} \frac{1 - e^{-kt(1+i)/\sqrt{2}}}{1 - e^{-ka(1+i)/\sqrt{2}}} \end{cases}$$

Rotation of the cycloid propagation direction measured in real space...

Rotation of the cycloid propagation direction measured in real space...

Resonant X-ray scattering

Resonant X-ray scattering

Polar plot of $\frac{2\pi}{\lambda}$ vs \vec{k} direction

Resonant X-ray scattering

Polar plot of $\frac{2\pi}{\lambda}$ vs \vec{k} direction

Resonant X-ray scattering

Polar plot of $\frac{2\pi}{\lambda}$ vs \vec{k} direction

Surface effect? Only $\vec{k_1}$ seen by neutrons

D. Lebeugle et al. Phys. Rev. Lett. 100 (2008), 227602

Universal patterns in lamellar systems

Block copolymer

Period 40 nm

🖥 T. A. Witten. Phys. Today 43 (1990), 21

Liquid crystals Period 800 nm

Y. Bouligand. Dislocations in solids (1983), Chap. 23

BiFeO₃ magnetic cycloid Period 64 nm

A. Finco et al. Phys. Rev. Lett. 128 (2022), 187201

Ferrimagnetic garnet

Period 8 µm

🗟 M. Seul et al. Phys. Rev. A 46 (1992), 7519

FeGe magnetic helix Period 70 nm

P. Schönherr et al. Nat. Phys. 14 (2018), 465

Fluid diffusion Period 250 μm

Q. Ouyang et al. Chaos 1 (1991), 411

Identification of these topological defects in BiFeO₃

 $+\pi$ -disclination

 $-\pi$ -disclination

Edge dislocation

Identification of these topological defects in BiFeO₃

 $+\pi$ -disclination

$-\pi$ -disclination

Edge dislocation

Perspective: electrical control?

Outline

Imaging topological defects in a multiferroic antiferromagnet

A. Finco et al. Phys. Rev. Lett. 128 (2022), 187201

Detection of magnetic textures through channelled spin waves

A. Finco et al. Nat. Commun. 12 (2021), 767

Outlook: further sensing possibilities

- Sensing electric field or temperature
- Other defects: boron vacancies in h-BN

P. Kumar et al. Phys. Rev. Appl. 18 (2022), L061002

Detection of magnetic noise rather than stray field

B. Flebus et al. Phys. Rev. B 98 (2018), 180409

- Completely compensated antiferromagnets = **no static stray field** to probe
- But NV centers are also sensitive to magnetic noise!
- Use the different noise properties above domains and domain walls for imaging

Detection of magnetic noise rather than stray field

B. Flebus et al. Phys. Rev. B 98 (2018), 180409

- Completely compensated antiferromagnets = no static stray field to probe
- But NV centers are also sensitive to magnetic noise!
- Use the different noise properties above domains and domain walls for imaging

Detection of magnetic noise rather than stray field

B. Flebus et al. Phys. Rev. B 98 (2018), 180409

- Completely compensated antiferromagnets = no static stray field to probe
- But NV centers are also sensitive to magnetic noise!
- Use the different noise properties above domains and domain walls for imaging

Imaging of synthetic antiferromagnets

Collaboration UMR CNRS/Thales: William Legrand, Fernando Ajejas, Karim Bouzehouane, Nicolas Reyren, Vincent Cros

Two ferromagnetic layers coupled antiferromagnetically

W. Legrand et al. Nat. Mat. 19 (2020), 34

- No net magnetic moment
- Compensation of dipolar effects
 → small skyrmions
- Small stray field due to vertical spacing
 → test system for noise imaging

Detection of domain walls by relaxometry

A. Finco et al. Nat. Commun. 12 (2021), 767

500

Origin of the noise: spin waves

Collaboration C2N: Jean-Paul Adam, Joo-Von Kim

- NV frequency slightly below the gap, in the tail of power spectral density, which is the reason why
 we detect some noise when approaching the tip.
- No gap in the domain walls, presence of modes at the NV frequency: the NV center is more sensitive to the noise from the walls!

Origin of the noise: spin waves

- NV frequency slightly below the gap, in the tail of power spectral density, which is the reason why we detect some noise when approaching the tip.
- No gap in the domain walls, presence of modes at the NV frequency: the NV center is more sensitive to the noise from the walls!

Skyrmions stabilized by pinning

Collaboration Spintec: Van-Tuong Pham, Olivier Boulle

Noise (PL) map

NV stray field map

Skyrmions stabilized by pinning

Collaboration Spintec: Van-Tuong Pham, Olivier Boulle

Insight about the internal structure of the skyrmions

Collaboration C2N: Joo-Von Kim

Insight about the internal structure of the skyrmions

Collaboration C2N: Joo-Von Kim

Analysis of the PL signal along the skyrmion contour

Insight about the internal structure of the skyrmions

Collaboration C2N: Joo-Von Kim

Analysis of the PL signal along the skyrmion contour

Outline

Imaging topological defects in a multiferroic antiferromagnet

A. Finco et al. Phys. Rev. Lett. 128 (2022), 187201

Detection of magnetic textures through channelled spin waves

A. Finco et al. Nat. Commun. 12 (2021), 767

Outlook: further sensing possibilities

- Sensing electric field or temperature
- Other defects: boron vacancies in h-BN

P. Kumar et al. Phys. Rev. Appl. 18 (2022), L061002

Electric field sensing

- Need to apply off-axis field to avoid that Zeeman effect dominates
- Electric susceptibilities rather small
 → spin echo sequences

Z. Qiu et al. npj Quantum Information 8 (2022)

W. S. Huxter et al. Nature Physics (2023)

Temperature sensing

Crystal dilatation \rightarrow Shift of the zero-field splitting

Temperature sensing

Crystal dilatation \rightarrow Shift of the zero-field splitting

Temperature sensing

Crystal dilatation \rightarrow Shift of the zero-field splitting

P. Kumar et al. Phys. Rev. Appl. 18 (2022), L061002

Summary

Imaging topological defects in a multiferroic antiferromagnet

A. Finco et al. Phys. Rev. Lett. 128 (2022), 187201

X

Detection of magnetic textures through channelled spin waves

A. Finco et al. Nat. Commun. 12 (2021), 767

Further sensing possibilities

- Sensing electric field or temperature
- Other defects: boron vacancies in h-BN

P. Kumar et al. Phys. Rev. Appl. 18 (2022), L061002

Acknowledgments

L2C, Montpellier

Angela Haykal, Pawan Kumar, Maxime Rollo, Rana Tanos, Florentin Fabre, Isabelle Robert-Philip, Vincent Jacques

UMR CNRS/Thales, Palaiseau

Pauline Dufour, Vincent Garcia, Stéphane Fusil, William Legrand, Karim Bouzehouane, Fernando Ajejas, Nicolas Reyren, Vincent Cros

SPEC, CEA Gif-sur-Yvette

Anne Forget, Dorothée Colson, Jean-Yves Chauleau, Michel Viret

Synchrotron Soleil

Nicolas Jaouen

C2N, Palaiseau Thibaut Devolder, Jean-Paul Adam, Joo-Von Kim

Spintec, Grenoble Van-Tuong Pham, Joseba Urrestarazu Larranaga, Olivier Boulle

European Research Council Established by the European Commission

