NM 04.04.01

Imaging skyrmions in ferromagnets and antiferromagnets with scanning NV microscopy Aurore Finco

Université de Montpellier and CNRS, Montpellier, France

MRS Spring Meeting online, April 21 2021 slides available at https://magimag.eu

Measure directly the magnetization rotation

Measure directly the magnetization rotation

stray field produced

Measure directly the magnetization rotation

Measure the magnetic stray field produced

Magnetic stray field sensor requirements

- Nanometric spatial resolution
- Non-perturbative
- High sensibility
- Working under ambient conditions

Magnetic stray field sensor requirements

- Nanometric spatial resolution
- Non-perturbative
- High sensibility
- Working under ambient conditions

Use NV centers in diamond

📓 L. Rondin et al. Rep. Prog. Phys. 77 (2014), 056503 🛛 📓 F. Casola et al. Nat. Rev. Mat. 3 (2018), 17088

L. Rondin et al. Rep. Prog. Phys. 77 (2014), 056503 🛛 F. Casola et al. Nat. Rev. Mat. 3 (2018), 17088

i) Low stray field

Quantitative stray field measurement

Optical tracking of the Zeeman shift

\rightarrow Antiferromagnets

📓 L. Rondin et al. Rep. Prog. Phys. 77 (2014), 056503 🛛 📓 F. Casola et al. Nat. Rev. Mat. 3 (2018), 17088

i) Low stray field

Quantitative stray field measurement

Optical tracking of the Zeeman shift

\rightarrow Antiferromagnets

ii) Large stray field

Qualitative stray field sources detection

Monitoring of the emitted photoluminescence

→ Ferromagnets

L. Rondin et al. Rep. Prog. Phys. 77 (2014), 056503 B. F. Casola et al. Nat. Rev. Mat. 3 (2018), 17088

i) Low stray field

Quantitative stray field measurement

Optical tracking of the Zeeman shift

 \rightarrow Antiferromagnets

ii) Large stray field

Qualitative stray field sources detection

Monitoring of the emitted photoluminescence

→ Ferromagnets

iii) Magnetic noise

Qualitative noise sources detection

Monitoring of the emitted photoluminescence

 \rightarrow Antiferromagnets

📓 L. Rondin et al. Rep. Prog. Phys. 77 (2014), 056503 🛛 📓 F. Casola et al. Nat. Rev. Mat. 3 (2018), 17088

i) Low stray field

Quantitative stray field measurement

Optical tracking of the Zeeman shift

\rightarrow Antiferromagnets

ii) Large stray field

Qualitative stray field sources detection

Monitoring of the emitted photoluminescence

→ Ferromagnets

iii) Magnetic noise

Qualitative noise sources detection

Monitoring of the emitted photoluminescence

\rightarrow Antiferromagnets

📓 L. Rondin et al. Rep. Prog. Phys. 77 (2014), 056503 🛛 📓 F. Casola et al. Nat. Rev. Mat. 3 (2018), 17088

AFM tip

Diamond

Implanted single NV center

Implanted single NV center

Implanted single NV center

Implanted single NV center

Zero-field skyrmions in a ferromagnet stabilized by exchange-bias

K. G. Rana et al. Phys. Rev. Appl. 13 (2020), 044079

Zero-field skyrmions in a ferromagnet stabilized by exchange-bias

K. G. Rana et al. Phys. Rev. Appl. 13 (2020), 044079

Noise-based imaging of skyrmions in a synthetic antiferromagnet

Normalized PL

0.9

A. Finco et al. Nat. Commun. 12 (2021), 767

Zero-field skyrmions in a ferromagnet stabilized by exchange-bias

K. G. Rana et al. Phys. Rev. Appl. 13 (2020), 044079

Noise-based imaging of skyrmions in a synthetic antiferromagnet

A. Finco et al. Nat. Commun. 12 (2021), 767

Goal: stable zero-field skyrmions at room temperature without confinement

Goal: stable zero-field skyrmions at room temperature without confinement

Goal: stable zero-field skyrmions at room temperature without confinement

IrMn/CoFeB stack µm-sized skyrmions

G. Yu et al. Nano Letters 18 (2018), 980-986

Goal: stable zero-field skyrmions at room temperature without confinement

G. Yu et al. Nano Letters 18 (2018), 980-986

Optimization of the sample parameters

 $t_{\rm IrMn} = 4.11 \, {\rm nm}$ $t_{\rm IrN}$

Magnetic skyrmions in qualitative high field mode

K. G. Rana et al. Phys. Rev. Appl. 13 (2020), 044079

Magnetic skyrmions in qualitative high field mode

K. G. Rana et al. Phys. Rev. Appl. 13 (2020), 044079

Magnetic skyrmions in qualitative high field mode

8

Comparison with simulations

Comparison with simulations

Zero-field skyrmions in a ferromagnet stabilized by exchange-bias

K. G. Rana et al. Phys. Rev. Appl. 13 (2020), 044079

Noise-based imaging of skyrmions in a synthetic antiferromagnet

1.0

0.9

Normalized PL

A. Finco et al. Nat. Commun. 12 (2021), 767
- No parasitic fields
- Robust textures
- Fast dynamics (THz range)
- Energy efficient switching
- T. Jungwirth et al. Nat. Nano. 11 (2016), 231
 V. Baltz et al. Rev. Mod. Phys. 90 (2018)

11

- No parasitic fields
- Robust textures
- Fast dynamics (THz range)
- Energy efficient switching
- T. Jungwirth et al. Nat. Nano. 11 (2016), 231
- V. Baltz et al. Rev. Mod. Phys. 90 (2018)

No deflection by skyrmion Hall effect

X. Zhang et al. Sci. Rep. 6 (2016), 24795

- No parasitic fields
- Robust textures
- Fast dynamics (THz range)
- Energy efficient switching
- T. Jungwirth et al. Nat. Nano. 11 (2016), 231
- V. Baltz et al. Rev. Mod. Phys. 90 (2018)

No deflection by skyrmion Hall effect

\rightarrow There is no stray field to probe!

Solution: Detect magnetic noise from thermal fluctuations

B. Flebus et al. Phys. Rev. B 98 (2018), 180409

X. Zhang et al. Sci. Rep. 6 (2016), 24795

- No parasitic fields
- Robust textures
- Fast dynamics (THz range)
- Energy efficient switching
- T. Jungwirth et al. Nat. Nano. 11 (2016), 231
- V. Baltz et al. Rev. Mod. Phys. 90 (2018)

No deflection by skyrmion Hall effect

\rightarrow There is no stray field to probe!

Solution: Detect magnetic noise from thermal fluctuations

B. Flebus et al. Phys. Rev. B 98 (2018), 180409

Thermal agitation Spin waves

X. Zhang et al. Sci. Rep. 6 (2016), 24795

- No parasitic fields
- Robust textures
- Fast dynamics (THz range)
- Energy efficient switching
- T. Jungwirth et al. Nat. Nano. 11 (2016), 231
 V. Baltz et al. Rev. Mod. Phys. 90 (2018)

No deflection by skyrmion Hall effect

\rightarrow There is no stray field to probe!

Solution: Detect magnetic noise from thermal fluctuations

B. Flebus et al. Phys. Rev. B 98 (2018), 180409

- No parasitic fields
- Robust textures
- Fast dynamics (THz range)
- Energy efficient switching
- T. Jungwirth et al. Nat. Nano. 11 (2016), 231
- V. Baltz et al. Rev. Mod. Phys. 90 (2018)

No deflection by skyrmion Hall effect

X. Zhang et al. Sci. Rep. 6 (2016), 24795

\rightarrow There is no stray field to probe!

Solution: Detect magnetic noise from thermal fluctuations

B. Flebus et al. Phys. Rev. B 98 (2018), 180409

Collaboration UMR CNRS/Thales: William Legrand, Fernando Ajejas, Karim Bouzehouane, Nicolas Reyren, Vincent Cros

Two ferromagnetic layers coupled antiferromagnetically

A. Finco et al. Nat. Commun. 12 (2021), 767

Collaboration UMR CNRS/Thales: William Legrand, Fernando Ajejas, Karim Bouzehouane, Nicolas Reyren, Vincent Cros

Two ferromagnetic layers coupled antiferromagnetically

W. Legrand et al. Nat. Mat. 19 (2020), 34

Collaboration UMR CNRS/Thales: William Legrand, Fernando Ajejas, Karim Bouzehouane, Nicolas Reyren, Vincent Cros

Two ferromagnetic layers coupled antiferromagnetically

- No net magnetic moment
- Small stray field (vertical shift)
- Highly tunable properties

W. Legrand et al. Nat. Mat. 19 (2020), 34

Collaboration UMR CNRS/Thales: William Legrand, Fernando Ajejas, Karim Bouzehouane, Nicolas Reyren, Vincent Cros

Two ferromagnetic layers coupled antiferromagnetically

W. Legrand et al. Nat. Mat. 19 (2020), 34

- No net magnetic moment
- Small stray field (vertical shift)
- Highly tunable properties

Perfect test system for noise imaging!

A. Finco et al. Nat. Commun. 12 (2021), 767

Detection of domain walls by relaxometry

Detection of domain walls by relaxometry

Collaboration C2N: Jean-Paul Adam, Joo-Von Kim

Collaboration C2N: Jean-Paul Adam, Joo-Von Kim

• NV frequency below the gap: we are not sensitive to the spin waves in the domains.

Collaboration C2N: Jean-Paul Adam, Joo-Von Kim

- NV frequency below the gap: we are not sensitive to the spin waves in the domains.
- No gap in the domain walls, presence of modes at the NV frequency: we are much more sensitive to the noise from the walls!

- NV frequency below the gap: we are not sensitive to the spin waves in the domains.
- No gap in the domain walls, presence of modes at the NV frequency: we are much more sensitive to the noise from the walls!

B W. Legrand et al. Nat. Mat. 19 (2020), 34

B W. Legrand et al. Nat. Mat. 19 (2020), 34

norm. PL

W. Legrand et al. Nat. Mat. 19 (2020), 34

norm. PL

W. Legrand et al. Nat. Mat. 19 (2020), 34

Calculated noise map +300 nm+ +500 nm+ 0.9 1.0 0.8 norm. PL

 $1.2 \,\mu T^2$

0.45

 $\|\delta \mathbf{B}_{\perp,i}^2\|$

and antiferromagnetic skyrmions!

W. Legrand et al. Nat. Mat. 19 (2020), 34

and antiferromagnetic skyrmions!

B W. Legrand et al. Nat. Mat. 19 (2020), 34

norm. PL

and antiferromagnetic skyrmions!

W. Legrand et al. Nat. Mat. 19 (2020), 34

Summary

Non-perturbative measurements of skyrmions in a ferromagnet

K. G. Rana et al. Phys. Rev. Appl. 13 (2020), 044079

Noise detection of skyrmions in a synthetic antiferromagnet

M. Rollo et al. arXiv:2101.00860 (2021)

A. Finco et al. Nat. Commun. 12 (2021), 767
Acknowledgments

L2C, Montpellier

Angela Havkal Rana Tanos Maxime Rollo Saddem Chouaieb **Florentin Fabre** Waseem Akhtar Isabelle Robert-Philip Vincent Jacques

UMR CNRS/Thales, Palaiseau

William Legrand Fernando Aieias Karim Bouzehouane Nicolas Revren Vincent Cros

C2N. Palaiseau

Jean-Paul Adam Thibaut Devolder Joo-Von Kim

DEFENSE ADVANCED PESEAPCH PROJECTS AGENCY

Spintec, Grenoble

Kumari Gaurav Rana Liliana Buda-Preibeanu **Olivier Fruchart Gilles** Gaudin **Olivier Boulle**

Forschungszentrum Jülich

Thibaud Denneulin Rafal Dunin-Borkowski

erc

European Research Council Established by the European Commission

Institut Néel. Grenoble

Simon Le Denmat Philippe David

LSPM. Villetaneuse

Mohamed Belmeguenai

