Influence of epitaxial strain on the magnetic order in antiferromagnetic thin films

Angela Haykal, Waseem Akhtar, Aurore Finco, Vincent Jacques

Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, France Johanna Fischer, Cécile Carrétéro, Manuel Bibes, Stéphane Fusil, Vincent Garcia Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris Saclay, Palaiseau, France Théophile Chirac, Jean-Yves Chauleau, Michel Viret SPEC, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France

Slides available at https://magimag.eu

T. Jungwirth et al. Nat. Nano. 11 (2016), 231–241

T. Jungwirth et al. Nat. Nano. 11 (2016), 231–241

2

H. Yan et al. Nat. Nano. 14 (2019), 131–136

H. Yan et al. Nat. Nano. 14 (2019), 131–136

H. Yan et al. Nat. Nano. 14 (2019), 131–136

Electric polarization

Paraelectric phase (T>1100 K)

Electric polarization

Ferroelectric phase (T<1100 K)

Electric polarization

Magnetism

G-type antiferromagnet

Ferroelectric phase (T<1100 K)

G. Catalan et al. Advanced Materials 21 (2009), 2463–2485

Known effect of epitaxial strain on the cycloid

D. Sando et al. Nature Materials 12 (2013), 641–646

Tuning of epitaxial strain

tomorrow 11:15, S8:2, Florentin Fabre

DyScO₃, strain -0.35%

PFM image ferroelectric domains

DyScO₃, strain -0.35%

PFM image ferroelectric domains

Reference spectrum resonance shifted by a permanent magnet Photoluminescence f_2 f1 2.75 2.76 2.77 2.78 2.79 MW freq. (GHz) $\Delta PL = PL(f_2) - PL(f_1)$

I. Gross et al. Nature 549 (2017), 252-256

DyScO₃, strain -0.35%

PFM image ferroelectric domains

DyScO₃, strain -0.35%

PFM image ferroelectric domains

DyScO₃, strain -0.35%

DyScO₃, strain -0.35%

The type I cycloid

The type II cycloid

 \vec{q}_3 \vec{P} q_2 $\vec{q}_1 \parallel [11\bar{2}]$ $\vec{q}_2 \parallel [1\bar{2}1]$ $\vec{q}_3 \parallel [\bar{2}11]$ \vec{q}_1

D. Sando et al. Nature Materials 12 (2013), 641–646

D. Sando et al. Nature Materials 12 (2013), 641-646

10

D. Sando et al. Nature Materials 12 (2013), 641–646

X-ray diffraction

DyScO₃

type I cycloid \vec{k}_1

N. Jaouen, J.-Y. Chauleau, M. Viret

X-ray diffraction

DyScO₃

type I cycloid \vec{k}_1

N. Jaouen, J.-Y. Chauleau, M. Viret

type II cycloid \vec{q}_2, \vec{q}_3

Known effect of epitaxial strain on the cycloid

D. Sando et al. Nature Materials 12 (2013), 641–646

Manipulation via magnetoelectric coupling

Summary

- New exploration of the phase diagram of BiFeO₃ thin films using real-space imaging
- Demonstration of the ability to manipulate electrically the magnetic cycloid
- Next step: use a piezoelectric substrate to vary the strain inside the NV magnetometer

