Detection of DMI-induced magnetic chirality from spin wave noise

Aurore Finco

Laboratoire Charles Coulomb Team Solid-State Quantum Technologies (S2QT)

CNRS and Université de Montpellier, Montpellier, France

ICM 2024, July 2nd 2024, Bologna slides available at https://magimag.eu

How can we use a quantum system to probe condensed matter?

How can we use a quantum system to probe condensed matter?

How can we use a quantum system to probe condensed matter?

How can we use a guantum system to probe condensed matter? Noise with a component at f_0 magnetic Spin Relaxation resonance ground state rate frequency External static perturbation \vec{B} . \vec{E} . T. P Resonant microwave field Shift of the energy levels Driving the transition

Quantum sensing for magnonics (a few examples)

H. Wang et al. Sci. Adv. 8 (2022), eabg8562

→ The 2024 Magnonics Roadmap

B. Flebus et al. J. Phys.: Condens. Matter 36 (2024), 363501

T (K)

Our quantum sensor: the NV center in diamond

- Artificial atom: energy levels in the diamond bandgap
- Photostable defect
- Spin S=1
- Individual defects can be isolated/implanted
- Ambient conditions

Spin-dependent fluorescence

Spin-dependent fluorescence

 $B \neq 0$

B = 0

2.9

Implanted single NV center

Implanted single NV center

Implanted single NV center

Implanted single NV center

Implanted single NV center

Example: Topological defects at the surface of bulk BiFeO₃ crystals

A. Finco et al. PRL 128 (2022), 187201

Example: Topological defects at the surface of bulk BiFeO₃ crystals

 π -disclination

 $-\pi$ -disclination

edge dislocation

Detection of magnetic noise rather than stray field

B. Flebus et al. Phys. Rev. B 98 (2018), 180409

- Completely compensated antiferromagnets = **no static stray field** to probe
- But NV centers are also sensitive to magnetic noise!
- Use the different noise properties above domains and domain walls for imaging

Detection of magnetic noise rather than stray field

B. Flebus et al. Phys. Rev. B 98 (2018), 180409

- Completely compensated antiferromagnets = no static stray field to probe
- But NV centers are also sensitive to magnetic noise!
- Use the different noise properties above domains and domain walls for imaging

Detection of magnetic noise rather than stray field

B. Flebus et al. Phys. Rev. B 98 (2018), 180409

- Completely compensated antiferromagnets = no static stray field to probe
- But NV centers are also sensitive to magnetic noise!
- Use the different noise properties above domains and domain walls for imaging

Acceleration of the relaxation with noise

Synthetic antiferromagnets

Samples: LAF, Palaiseau (W. Legrand, K. Bouzehouane, N. Reyren, V. Cros) Spintec, Grenoble (V.-T. Pham, J. Urrestarazu, R. Guedas, O. Boulle)

Two ferromagnetic layers coupled antiferromagnetically

W. Legrand et al. Nat. Mat. 19 (2020), 34
V. T. Pham et al. Science 384 (2024), 307

- No net magnetic moment
- Small stray field (vertical shift)
- Highly tunable properties
- Spin wave frequencies in the few GHz range

```
→ Perfect test system for noise imaging!
```

Detection of domain walls by relaxometry

A. Finco et al. Nat. Commun. 12 (2021), 767

Origin of the noise: spin waves

Collaboration: C2N, Palaiseau (J.-P. Adam, J.-V. Kim)

- NV frequency slightly below the gap, in the tail of power spectral density, which is the reason why we detect some noise when approaching the tip.
- No gap in the domain walls, presence of modes at the NV frequency: the NV center is more sensitive to the noise from the walls!

Origin of the noise: spin waves

Collaboration: C2N, Palaiseau (J.-P. Adam, J.-V. Kim)

- NV frequency slightly below the gap, in the tail of power spectral density, which is the reason why we detect some noise when approaching the tip.
- No gap in the domain walls, presence of modes at the NV frequency: the NV center is more sensitive to the noise from the walls!

After applying magnetic field

NV stray field map

Noise (PL) map

- Oop field of about 150 mT applied for nucleation
- Skyrmions and big bubbles pinned

Statistics on Néel left (CCW) skyrmions

Statistics on Néel left (CCW) skyrmions

Angular variation of PL

Statistics on Néel left (CCW) skyrmions

Angular variation of PL

normalized PL

Expected pattern on other skyrmion types

Simulated noise distribution along the contour

- The pattern allows us to identify Néel skyrmions
- Strong difference in noise amplitude expected between Néel left and Néel right skyrmions...
- ... while the stray field maps are very similar!

3_{NV} (mT)

Do we also expect this for domain walls? Yes!

Calculation: C2N, Palaiseau (J.-V. Kim)

Experiment: looking at both sides of the film

Initial stack: Néel left

A. Finco et al. in preparation (2024)

Samples: J. Urrestarazu, R. Guedas, Spintec, Grenoble

Experiment: looking at both sides of the film

Initial stack: Néel left

Inverted stack: Néel right

Samples: J. Urrestarazu, R. Guedas, Spintec, Grenoble

A. Finco et al. in preparation (2024)

Origin of this effect, 1st ingredient : Spin waves = fridge magnets

Halbach arrays

J. Mallinson. IEEE Trans. on Mag. 9 (1973), 678

T. Devolder. Phys. Rev. Appl. 20 (2023), 054057

Wavevector k

Wavevector k

Expected noise level vs DMI

Calculation: J.-V. Kim, C2N, Palaiseau

Summary

Localization and characterization of magnetic textures from thermal spin wave noise using scanning NV center microscopy

Method to get insight about sign and strength of DMI

M. Rollo et al. PRB 103 (2021), 235418
A. Finco et al. Nat. Commun. 12 (2021), 767
A. Finco et al. in preparation (2024)

Acknowledgments

L2C, Montpellier

Pawan Kumar, Maxime Rollo, Florentin Fabre, Angela Haykal, Rana Tanos, Saddem Chouaieb, Waseem Akhtar, Isabelle Philip, Vincent Jacques

UMR CNRS/Thales, Palaiseau

William Legrand, Fernando Ajejas, Karim Bouzehouane, Nicolas Reyren, Vincent Cros

C2N, Palaiseau

Jean-Paul Adam, Thibaut Devolder, Joo-Von Kim

Spintec, Grenoble

Van-Tuong Pham, Joseba Urrestarazu-Larrañaga, Rodrigo Guedas Garcia, Naveen Sisodia, Kaushik Bairagi, Johan Pelloux-Prayer, Liliana Buda-Prejbeanu, Gilles Gaudin, Olivier Boulle

European Research Council Established by the European Commission

EXAFONIS

TATOO

