Imaging skyrmions in synthetic antiferromagnets by single spin relaxometry

Aurore Finco

Université de Montpellier and CNRS, Montpellier, France

DPG Spring Meeting online, September 28th 2021 slides available at https://magimag.eu

Magnetic skyrmions

- Localized magnetic object
- Topological charge: the magnetization direction covers a sphere
- Nanoscale size
- Moves with current

Magnetic skyrmions

- Localized magnetic object
- Topological charge: the magnetization direction covers a sphere
- Nanoscale size
- Moves with current

Skyrmion racetrack memory

T. L. Monchesky. Nat. Nano. 10 (2015), 1008

Challenges: size, pinning, efficient movement, ...

Magnetic skyrmions

- Localized magnetic object
- Topological charge: the magnetization direction covers a sphere
- Nanoscale size
- Moves with current

Skyrmion racetrack memory

T. L. Monchesky. Nat. Nano. 10 (2015), 1008

Challenges: size, pinning, efficient movement, ...

→ Efficient and non-perturbative imaging technique under ambient conditions?

Outline

Scanning NV microscopy

Skyrmions in ferromagnets

Noise based imaging in synthetic antiferromagnets

Outline

Scanning NV microscopy

Skyrmions in ferromagnets

Normalized PL

Noise based imaging in synthetic antiferromagnets

Defect in diamond

Defect in diamond

- Optical manipulation and reading
- Ambient conditions

Defect in diamond

- Optical manipulation and reading
- Ambient conditions

fluorescence dark = $|\pm 1\rangle$ 2.87 GHz $|0\rangle$ NV ground state spin S = 1

Spin-dependent

Defect in diamond

- Optical manipulation and reading
- Ambient conditions

Defect in diamond

- Optical manipulation and reading
- Ambient conditions

Defect in diamond

- Optical manipulation and reading
- Ambient conditions

Defect in diamond

- Optical manipulation and reading
- Ambient conditions

Mixing of the spin states

To summarize:

- 1. Quantitative imaging mode: for small fields, tracking the spin resonance
- 2. Qualitative imaging mode: for large fields (> 10 mT), monitoring photoluminescence

AFM tip

Diamond

Implanted single NV center

Implanted single NV center

Implanted single NV center

Implanted single NV center

Implanted single NV center

Outline

Scanning NV microscopy

Skyrmions in ferromagnets

Noise based imaging in synthetic antiferromagnets

Collaborations: LPS Orsay, LSPM Villetaneuse, TU Cluj-Napoca, Uni Basel

Collaborations: LPS Orsay, LSPM Villetaneuse, TU Cluj-Napoca, Uni Basel

W. Akhtar et al. Phys. Rev. Applied 11 (2019), 034066

Collaborations: LPS Orsay, LSPM Villetaneuse, TU Cluj-Napoca, Uni Basel

 $B_{\rm NV}=0\,{
m mT}$

Nucleation with current pulses

Directionality: m_x leads to an effective SHE field perpendicular to the surface

W. Akhtar et al. Phys. Rev. Applied 11 (2019), 034066

Collaborations: LPS Orsay, LSPM Villetaneuse, TU Cluj-Napoca, Uni Basel

 $B_{\rm NV} = 5 \, {\rm mT}$

 $B_{\rm NV}=0\,{
m mT}$

 $B_{\rm NV} = 13 \, {\rm mT}$

Movement with current pulses

W. Akhtar et al. Phys. Rev. Applied 11 (2019), 034066

Collaborations: Spintec Grenoble, Institut Néel Grenoble, LSPM Villetaneuse, FZ Jülich

Collaborations: Spintec Grenoble, Institut Néel Grenoble, LSPM Villetaneuse, FZ Jülich

K. G. Rana et al. Phys. Rev. Applied 13 (2020), 044079

Collaborations: Spintec Grenoble, Institut Néel Grenoble, LSPM Villetaneuse, FZ Jülich

K. G. Rana et al. Phys. Rev. Applied 13 (2020), 044079

Collaborations: Spintec Grenoble, Institut Néel Grenoble, LSPM Villetaneuse, FZ Jülich

K. G. Rana et al. Phys. Rev. Applied 13 (2020), 044079

A perfect tool to study antiferromagnets

Collaborations: UMR CNRS/Thales, Palaiseau, SPEC CEA Saclay, Synchrotron Soleil

BiFeO₃

- Room temperature multiferroic
- Cycloidal modulation of the antiferromagnetic order
- Study of magnetoelectric couplings, strain effects, etc.

See SYNV 1.3, V. Jacques

- I. Gross et al. Nature 549 (2017), 252
- J.-Y. Chauleau et al. Nat. Mater. 19 (2020), 386
- A. Haykal et al. Nat. Comm. 11 (2020), 1704

A perfect tool to study antiferromagnets

Collaborations: UMR CNRS/Thales, Palaiseau, SPEC CEA Saclay, Synchrotron Soleil

BiFeO₃

- Room temperature multiferroic
- Cycloidal modulation of the antiferromagnetic order
- Study of magnetoelectric couplings, strain effects, etc.

See SYNV 1.3, V. Jacques

- I. Gross et al. Nature 549 (2017), 252
- J.-Y. Chauleau et al. Nat. Mater. 19 (2020), 386
- A. Haykal et al. Nat. Comm. 11 (2020), 1704

What if there are no uncompensated moments at all?

Outline

Scanning NV microscopy

Skyrmions in ferromagnets

Normalized PL

Noise based imaging in synthetic antiferromagnets

• Completely compensated antiferromagnets = no static stray field to probe

- Completely compensated antiferromagnets = **no static stray field** to probe
- But NV centers are also sensitive to magnetic noise!

B. Flebus et al. Phys. Rev. B 98 (2018), 180409

- Completely compensated antiferromagnets = no static stray field to probe
- But NV centers are also sensitive to magnetic noise!
- Use the different noise properties above domains and domain walls for imaging

B. Flebus et al. Phys. Rev. B 98 (2018), 180409

- Completely compensated antiferromagnets = no static stray field to probe
- But NV centers are also sensitive to magnetic noise!
- Use the different noise properties above domains and domain walls for imaging

Thermal agitation Spin waves

B. Flebus et al. Phys. Rev. B 98 (2018), 180409

- Completely compensated antiferromagnets = no static stray field to probe
- But NV centers are also sensitive to magnetic noise!
- Use the different noise properties above domains and domain walls for imaging

B. Flebus et al. Phys. Rev. B 98 (2018), 180409

- Completely compensated antiferromagnets = no static stray field to probe
- But NV centers are also sensitive to magnetic noise!
- Use the different noise properties above domains and domain walls for imaging

Collaboration C2N: T. Devolder

M. Rollo et al. PRB 103 (2021), 235418

Collaboration UMR CNRS/Thales: William Legrand, Fernando Ajejas, Karim Bouzehouane, Nicolas Reyren, Vincent Cros

THALES

Collaboration UMR CNRS/Thales: William Legrand, Fernando Ajejas, Karim Bouzehouane, Nicolas Reyren, Vincent Cros

Two ferromagnetic layers coupled antiferromagnetically

Collaboration UMR CNRS/Thales: William Legrand, Fernando Ajejas, Karim Bouzehouane, Nicolas Reyren, Vincent Cros

Two ferromagnetic layers coupled antiferromagnetically

W. Legrand et al. Nat. Mat. 19 (2020), 34

Collaboration UMR CNRS/Thales: William Legrand, Fernando Ajejas, Karim Bouzehouane, Nicolas Reyren, Vincent Cros

Two ferromagnetic layers coupled antiferromagnetically

W. Legrand et al. Nat. Mat. 19 (2020), 34

- No net magnetic moment
- Compensation of dipolar effects
 → small skyrmions
- No skyrmion Hall effect
- Small stray field due to vertical spacing
 → test system for noise imaging

Detection of domain walls by relaxometry

Detection of domain walls by relaxometry

A. Finco et al. Nat. Commun. 12 (2021), 767

Detection of domain walls by relaxometry

A. Finco et al. Nat. Commun. 12 (2021), 767

0

500

Collaboration C2N: Jean-Paul Adam, Joo-Von Kim

Collaboration C2N: Jean-Paul Adam, Joo-Von Kim

• NV frequency slightly below the gap, in the tail of power spectral density, which is the reason why we detect some noise when approaching the tip.

Collaboration C2N: Jean-Paul Adam, Joo-Von Kim

- NV frequency slightly below the gap, in the tail of power spectral density, which is the reason why
 we detect some noise when approaching the tip.
- No gap in the domain walls, presence of modes at the NV frequency: the NV center is more sensitive to the noise from the walls!

- NV frequency slightly below the gap, in the tail of power spectral density, which is the reason why we detect some noise when approaching the tip.
- No gap in the domain walls, presence of modes at the NV frequency: the NV center is more sensitive to the noise from the walls!

B W. Legrand et al. Nat. Mat. 19 (2020), 34

B W. Legrand et al. Nat. Mat. 19 (2020), 34

norm. PL

W. Legrand et al. Nat. Mat. 19 (2020), 34

W. Legrand et al. Nat. Mat. 19 (2020), 34

Calculated noise map +300 nm+ +500 nm+ 0.9 1.0 0.8 norm. PL

 $1.2 \,\mu T^2$

0.45

 $\|\delta \mathbf{B}_{\perp,i}^2\|$
Synthetic antiferromagnetic skyrmions

W. Legrand et al. Nat. Mat. 19 (2020), 34

Synthetic antiferromagnetic skyrmions

W. Legrand et al. Nat. Mat. 19 (2020), 34

Experimental noise map

Origin of the contrast in the skyrmion case

- No internal skyrmion excitation at 2.87 GHz
- Scattering of the spin waves on the skyrmions

Origin of the contrast in the skyrmion case

- No internal skyrmion excitation at 2.87 GHz
- Scattering of the spin waves on the skyrmions

Origin of the contrast in the skyrmion case

- No internal skyrmion excitation at 2.87 GHz
- Scattering of the spin waves on the skyrmions

Summary

\rightarrow Imaging of skyrmions in ferromagnets

 $B_{\rm NV}$ = 0 mT $B_{\rm NV}$ = 5 mT $B_{\rm NV}$ = 13 mT

Summary

\rightarrow Imaging of skyrmions in ferromagnets

 $B_{\rm NV}$ = 0 mT $B_{\rm NV}$ = 5 mT $B_{\rm NV}$ = 13 mT

 \rightarrow All optical noise detection with NV centers

M. Rollo et al. PRB 103 (2021), 235418

Summary

 \rightarrow Imaging of skyrmions in ferromagnets

 $B_{\rm NV}$ = 0 mT $B_{\rm NV}$ = 5 mT $B_{\rm NV}$ = 13 mT

 \rightarrow All optical noise detection with NV centers

 \rightarrow Application to the imaging of magnetic textures in synthetic antiferromagnets

Acknowledgments

L2C, Montpellier

Angela Haykal Rana Tanos Maxime Rollo Saddem Chouaieb **Florentin Fabre** Waseem Akhtar Isabelle Robert-Philip Vincent Jacques

UMR CNRS/Thales, Palaiseau

William Legrand Fernando Ajejas Karim Bouzehouane **Nicolas Reyren** Vincent Cros

C2N, Palaiseau

Jean-Paul Adam Thibaut Devolder Joo-Von Kim

European Research Council Established by the European Commission

