Scanning NV center thermometry

Elias Sfeir, Maxime Rollo, Roméo Beignon, Yoann Baron, Felipe Favaro de Oliveira, Gediminas Seniutinas, Marcelo Gonzalez, Mathieu Munsch, Patrick Maletinsky, Jean-Baptiste Jager, Jean-Michel Gérard, Vincent Jacques, Aurore Finco, Isabelle Robert-Philip

DPG Spring meeting, March 17th 2025, Regensburg slides available at https://magimag.eu

Map magnetic stray field (Zeeman shift)

A. Finco et al. PRL 128 (2022), 187201

Map magnetic stray field (Zeeman shift)

A. Finco et al. PRL 128 (2022), 187201

Map electric stray field (Stark shift)

Nanoscale spatial resolution + operation under ambient conditions

Nanoscale spatial resolution + operation under ambient conditions

Thermal resistance of graphene flakes (in vacuum)

Joule heating in graphene nanoribbons (in N₂ atmosphere) 4 nm 2 1 um 24 K Y.-J. Yu et al. APL 99 (2011), 183105

Nanoscale spatial resolution + operation under ambient conditions

Thermal resistance of graphene flakes (in vacuum)

F. Menges et al. PRL 111 (2013), 205901

Measured with SThM

Joule heating in graphene nanoribbons (in N₂ atmosphere)

2 4 nm

I Y.-J. Yu et al. APL 99 (2011), 183105

Nanoscale spatial resolution + operation under ambient conditions

Thermal resistance of graphene flakes (in vacuum)

Measured with SThM

Joule heating in graphene nanoribbons (in N₂ atmosphere)

0 2 4 nm 1μm ΔT 0 12 24 K

I Y.-J. Yu et al. APL 99 (2011), 183105

Monitoring of the killing of cells with temperature

Nanoscale spatial resolution + operation under ambient conditions

Thermal resistance of graphene flakes (in vacuum)

Measured with SThM

Joule heating in graphene nanoribbons (in N_2 atmosphere) 0 2 4 nm

🖥 Y.-J. Yu et al. APL 99 (2011), 183105

Measured with NV centers in nanodiamonds

Monitoring of the killing of cells with temperature

In the literature

- Photoheated gold nanoparticle
- Experiment using an ensemble of NV centers and scanning in water

J.-P. Tetienne et al. Nano Lett. 16 (2016), 326

Our samples

Doped Silicon nanowire Deposited on SiO₂, with gold contacts Fabricated at Pheliqs in Grenoble

Nanowire width: 100 to 150 nm

We expect a strong **Joule heating** at the nanowire when applying current

Measurement at 50 µA

Photoluminescence

D shift

-2 -1 0 Temperature

Measurement at 50 µA Temperature Photoluminescence D shift 1µm 400 600 20 30 200 -3 -2 -1 0 10 PL (kcts/s) D shift (MHz) ΔT (K)

Measurement at 50 µA Temperature Photoluminescence D shift 1µm 400 600 20 30 200 -3 -2 -1 0 10 PL (kcts/s) D shift (MHz) ΔT (K)

•

The terrible fate of the samples

The nanowire **before** we start measuring

The terrible fate of the samples

The nanowire **before** we start measuring

The nanowire **after** we worked on it for some time (usually not very long)

The problem with perpendicular magnetic field

Perpendicular magnetic field also shifts *D*, **and looks like an effective cooling!**

J.-P. Tetienne et al. New Journal of Phys. 14 (2012), 103033

A third temperature map

Different nanowire, current 60 $\mu A,$ different diamond probe

This time we observe Joule heating, but again smaller than expected...

Identified issues

- The contact between the apex of the diamond tip and the sample is not controlled
- Diamond has a very large thermal conductivity (1000 to 3300 W m⁻¹ K) and dissipates a lot of thermal energy!

R. Tanos et al. AIP Advances 10 (2020), 025027

So how could we actually perform scanning NV thermometry?

- Reduce the volume of diamond in the probe to minimize dissipation
- Use an **ensemble of NV centers**, same orientation, to increase the signal
- Shift the NV centers away from the tip apex to reduce the effect of stray field
- Conical pillar to improve spatial resolution

Acknowledgments

Yoann Baron, Jean-Baptiste Jager, Jean-Michel Gérard

Universität Basel Felipe Favaro de Oliveira, Gediminas Seniutinas, Marcelo Gonzalez, Mathieu Munsch, Patrick Maletinsky

Elias Sfeir, Maxime Rollo, Roméo Beignon, Vincent Jacques, Isabelle Robert-Philip

Acknowledgments

Yoann Baron, Jean-Baptiste Jager, Jean-Michel Gérard

Universität Basel Felipe Favaro de Oliveira, Gediminas Seniutinas, Marcelo Gonzalez, Mathieu Munsch, Patrick Maletinsky

Elias Sfeir, Maxime Rollo, Roméo Beignon, Vincent Jacques, Isabelle Robert-Philip

Interested in joining our team? PhD and postdoc positions available in scanning NV microscopy Contact: aurore.finco@umontpellier.fr