MA 32.6: Magnetic imaging with spin defects in hexagonal boron nitride

Aurore Finco

Laboratoire Charles Coulomb Team Solid-State Quantum Technologies (S2QT)

CNRS and Université de Montpellier, Montpellier, France

DPG SKM 2023, March 29th 2023, Dresden

slides available at https://magimag.eu

Acknowledgments

L2C, Montpellier

Pawan Kumar, Florentin Fabre, Alrik Durand, Tristan Clua-Provost, Zhao Mu, Isabelle Robert-Philip, Bernard Gil, Guillaume Cassabois, Vincent Jacques

Kansas State University, USA Jiahan Li, James Edgar

Institut Néel, Grenoble, France Johann Coraux, Nicolas Rougemaille

LPCNO, Toulouse, France Cédric Robert, Jules Fraunie, Pierre Renucci, Xavier Marie

Collaboration: Institut Néel, Grenoble (A. Purbawati, J. Coraux, N. Rougemaille)

Scanning NV center magnetometry on CrTe₂ 2D ferromagnet at room temperature with in-plane magnetization

F. Fabre et al. Phys. Rev. Mater. 5 (2021), 034008

Collaboration: Institut Néel, Grenoble (A. Purbawati, J. Coraux, N. Rougemaille)

Scanning NV center magnetometry on CrTe₂ 2D ferromagnet at room temperature with in-plane magnetization

F. Fabre et al. Phys. Rev. Mater. 5 (2021), 034008

Collaboration: Institut Néel, Grenoble (A. Purbawati, J. Coraux, N. Rougemaille)

Scanning NV center magnetometry on CrTe₂ 2D ferromagnet at room temperature with in-plane magnetization

F. Fabre et al. Phys. Rev. Mater. 5 (2021), 034008

Collaboration: Institut Néel, Grenoble (A. Purbawati, J. Coraux, N. Rougemaille)

Scanning NV center magnetometry on CrTe₂ 2D ferromagnet at room temperature with in-plane magnetization

Defects in h-BN

- h-BN is a wide bandgap material (about 6 eV)
- Single photon emitters were known in h-BN

T. T. Tran et al. Nature Nanotechnology 11 (2016), 37

Defects in h-BN

- h-BN is a wide bandgap material (about 6 eV)
- Single photon emitters were known in h-BN
- A spin defect was identified in 2020

A. Gottscholl et al. Nat. Mater. 19 (2020), 540

Objective: a quantum sensing foil integrated in the van der Waals heterostructure

Creating ensembles of boron vacancies in h-BN

Collaboration: Kansas State University (J. Li, J. Edgar)

1mm

S. Liu et al. Chem. of Mater. 30 (2018), 6222

Creating ensembles of boron vacancies in h-BN

Collaboration: Kansas State University (J. Li, J. Edgar)

neutron irradiated h-BN crystal $2.6 \times 10^{16} \text{ n/c}^2\text{m}$

> pristine h-BN crystal

1mm

S. Liu et al. Chem. of Mater. 30 (2018), 6222

- Excitation at 532 nm
- Ambient conditions

A. Haykal et al. Nat. Commun. 13 (2022), 4347

Measuring magnetic fields with V_B^-

Spin-dependent fluorescence

Measuring magnetic fields with $V_{\rm B}^{-}$

Spin-dependent fluorescence

Measuring magnetic fields with $V_{\rm B}^{-}$

Spin-dependent fluorescence

Measuring magnetic fields with $V_{\rm B}^{-}$

Spin-dependent fluorescence

Optically detected magnetic resonance

Magnetic field sensitivity

$$\eta \sim 0.7 ~ rac{1}{\gamma_e} ~ rac{\Delta
u}{\mathcal{C} \sqrt{\mathcal{R}}}$$

P. Kumar et al. Phys. Rev. Appl. 18 (2022), L061002

Magnetic field sensitivity

P. Kumar et al. Phys. Rev. Appl. 18 (2022), L061002

8

Imaging a CrTe₂ flake

Collaboration: Institut Néel, Grenoble and LPCNO, Toulouse

P. Kumar et al. Phys. Rev. Appl. 18 (2022), L061002

Imaging a CrTe₂ flake

Collaboration: Institut Néel, Grenoble and LPCNO, Toulouse

P. Kumar et al. Phys. Rev. Appl. 18 (2022), L061002

Comparison with simulations

Two averaging procedures are necessary:

- Vertically, over the h-BN film thickness
- Laterally, over the gaussian profile of the laser beam

 \rightarrow Being really quantitative is difficult, using thinner flakes would help!

Effect of heating

P. Kumar et al. Phys. Rev. Appl. 18 (2022), L061002

Using thinner flakes

- PL quenching effect at the metallic surface of CrTe₂
- Need for larger laser excitation power
- Heating of the magnetic material, crossing T_C

Summary

P. Kumar et al. Phys. Rev. Appl. 18 (2022), L061002
 A. J. Healey et al. Nat. Phys. 19 (2023), 87

M. Huang et al. Nat. Commun. 13 (2022), 5369

The team S2QT in Montpellier

