

MA 28.4: Non collinear magnetic order at room temperature

Aurore Finco, Pin-Jui Hsu, Niklas Romming, Thomas Eelbo, Lorenz Schmidt, André Kubetzka, Kirsten von Bergmann and Roland Wiesendanger

University of Hamburg, Germany

- Skyrmions: topologically non trivial magnetic objects
- Interesting for spintronics applications (racetrack memories)
- Stabilized in ultrathin films by the interface-induced Dzyaloshinskii-Moriya interaction

Fe/Ir(111): nanoskyrmion lattice

How to improve thermal stability?

S. Heinze et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nature Physics 7.9 (2011).

A. Sonntag et al. Thermal Stability of an Interface-Stabilized Skyrmion Lattice. Phys. Rev. Lett. 113 (2014).

C Moreau-Luchaire et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nature Nanotechnology (2016).

- Skyrmions: topologically non trivial magnetic objects
- Interesting for spintronics applications (racetrack memories)
- Stabilized in ultrathin films by the interface-induced Dzyaloshinskii-Moriya interaction

Fe/Ir(111): nanoskyrmion lattice

How to improve thermal stability?

Multilaver stacks e.g. (lr/Co/Pt)_x

Room temperature skyrmions observed

S. Heinze et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nature Physics 7.9 (2011).

A. Sonntag et al. Thermal Stability of an Interface-Stabilized Skyrmion Lattice. Phys. Rev. Lett. 113 (2014).

C Moreau-Luchaire et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nature Nanotechnology (2016).

- Skyrmions: topologically non trivial magnetic objects
- Interesting for spintronics applications (racetrack memories)
- Stabilized in ultrathin films by the interface-induced Dzyaloshinskii-Moriya interaction

Fe/Ir(111): nanoskyrmion lattice

S. Heinze et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nature Physics 7.9 (2011).

A. Sonntag et al. Thermal Stability of an Interface-Stabilized Skyrmion Lattice. Phys. Rev. Lett. 113 (2014).

C Moreau-Luchaire et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nature Nanotechnology (2016).

- Skyrmions: topologically non trivial magnetic objects
- Interesting for spintronics applications (racetrack memories)
- Stabilized in ultrathin films by the interface-induced Dzyaloshinskii-Moriya interaction

Fe/Ir(111): nanoskyrmion lattice

S. Heinze et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nature Physics 7.9 (2011).

A. Sonntag et al. Thermal Stability of an Interface-Stabilized Skyrmion Lattice. Phys. Rev. Lett. 113 (2014).

C Moreau-Luchaire et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nature Nanotechnology (2016).

Morphology of the Fe films on Ir(111)

- Iattice mismatch between Fe and Ir (34% between bulk fcc Ir and bulk bcc Fe)
- Fe deposition at elevated substrate temperature (around 200 °C)
- Ist layer pseudomorphic (strained)
- reconstruction lines along the 3 equivalent crystallographic directions on the thicker layers (uniaxial strain release)

Topography, U = -700 mV, I = 1 nA, T = 4 K, B = 2.5 T, Cr bulk tip

P-J. Hsu et al. Guiding Spin Spirals by Local Uniaxial Strain Relief. Phys. Rev. Lett. 116 (2016).

Non-collinear magnetic structure, low T, no external field Strong influence of the surface structure on the magnetic order

Differential conductance, U = -700 mV, I = 1 nA, T = 8 K, B = 0 T, Cr bulk tip with out-of-plane magnetic sensitivity

Topography, U = 200 mV, I = 1 nA, T = 8 K, B = 0 T, Cr bulk tip

Differential conductance, U = -700 mV, I = 1 nA,T = 8 K, B = 0 T, Cr bulk tip

- Cycloidal spin spirals guided by the lines on the 2nd and 3rd layers
- Ferromagnetic domains on the 4th layer

Non-collinear magnetic structure, low T, no external field Strong influence of the surface structure on the magnetic order

Differential conductance, U = -700 mV, I = 1 nA, T = 8 K, B = 0 T, Cr bulk tip with out-of-plane magnetic sensitivity

Topography, U = 200 mV, I = 1 nA, T = 8 K, B = 0 T, Cr bulk tip

Differential conductance, U = -700 mV, I = 1 nA,T = 8 K, B = 0 T, Cr bulk tip

- Cycloidal spin spirals guided by the lines on the 2nd and 3rd layers
- Ferromagnetic domains on the 4th layer

Non-collinear magnetic structure, low T, no external field Strong influence of the surface structure on the magnetic order

Differential conductance, U = -700 mV, I = 1 nA, T = 8 K, B = 0 T, Cr bulk tip with out-of-plane magnetic sensitivity

Topography, U = 200 mV, I = 1 nA, T = 8 K, B = 0 T, Cr bulk tip

Differential conductance, U = -700 mV, I = 1 nA,T = 8 K, B = 0 T, Cr bulk tip

- Cycloidal spin spirals guided by the lines on the 2nd and 3rd layers
- Ferromagnetic domains on the 4th layer

Application of an external out-of-plane magnetic field

- No effect on the 2nd layer up to 9T.
- On the 3rd layer, single magnetic objects appear around 1.5T.

Differential conductance, U = -700 mV, I = 1 nA, T = 8 K, B = -2.5 T, Cr bulk tip

Differential conductance, U = -500 mV, I = 1 nA, T = 4 K, Cr bulk tip with out-of-plane magnetic sensitivity

P-J. Hsu et al. Electric field driven switching of individual magnetic skyrmions. arXiv:1601.02935 (2016).

Application of an external out-of-plane magnetic field

- No effect on the 2nd layer up to 9T.
- On the 3rd layer, single magnetic objects appear around 1.5T.

Differential conductance, U = -700 mV, I = 1 nA, T = 8 K, B = -2.5 T, Cr bulk tip

Differential conductance, U = -500 mV, I = 1 nA, T = 4 K, Cr bulk tip with out-of-plane magnetic sensitivity

P-J. Hsu et al. Electric field driven switching of individual magnetic skyrmions. arXiv:1601.02935 (2016).

Temperature dependence of the 2nd layer

No external magnetic field

- Spin-polarized measurements with a Fe coated W tip
- Temperature increased in several steps

Differential conductance, U = -0.7 V, I = 0.7 nA

Differential conductance, U = -0.5 V, I = 2 nA

Differential conductance, U = -1.3 V, I = 1.5 nA

Differential conductance, U = -0.7 V, I = 2 nA, B = 0 T

Temperature dependence of the 2nd layer

No external magnetic field

- Spin-polarized measurements with a Fe coated W tip
- Temperature increased in several steps

Differential conductance, U = -0.7 V, I = 0.7 nA

Differential conductance, U = -0.5 V, I = 2 nA

Differential conductance, U = -1.3 V, I = 1.5 nA

Differential conductance, U = -0.7 V, I = 2 nA, B = 0 T

Temperature dependence of the 3rd layer

No external magnetic field

- Spin-polarized measurements with a Fe coated W tip
- Temperature increased in several steps

Differential conductance, U = -1 V, I = 1 nA Differential conductance, U = -0.7 V, I = 1 nA

Differential conductance, U = -0.7 V, I = 2 nA

Differential conductance, U = -0.7 V, I = 3 nA

Temperature dependence of the 3rd layer

No external magnetic field

- Spin-polarized measurements with a Fe coated W tip
- Temperature increased in several steps

Differential conductance, U = -1 V, I = 1 nA Differential conductance, U = -0.7 V, I = 1 nA

Differential conductance, U = -0.7 V, I = 2 nA

Differential conductance, U = -0.7 V, I = 3 nA

Temperature dependence of the 3rd layer

No external magnetic field

- Spin-polarized measurements with a Fe coated W tip
- Temperature increased in several steps

Differential conductance, U = -1 V, I = 1 nA Differential conductance, U = -0.7 V, I = 1 nA

Differential conductance, U = -0.7 V, I = 2 nA

Differential conductance, U = -0.7 V, I = 3 nA

Non-collinear magnetism at room temperature Switch to an antiferromagnetic Cr bulk tip

Differential conductance, U = -0.5 V, I = 3 nA, B = 0 T

Non-collinear magnetism at room temperature Switch to an antiferromagnetic Cr bulk tip

Differential conductance, U = -0.5 V, I = 3 nA, B = 0 T

- Spin spirals visible on the 3rd, 4th and 5th layers.
- Direction of the wavevector still given by the reconstruction lines
- Periodicity between 60 and 80 nm
- Straight wavefront perpendicular to the lines
- The spirals are crossing the different layers

- The local atom arrangement does not impose the shape of the wave front anymore, only the propagation direction.
- A coupling between the 3rd, the 4th and the 5th layers seems to become important at room temperature.

Evolution of the magnetic periodicity on the 3rd layer

Evolution of the magnetic periodicity on the 3rd layer

Summary

Temperature (no external magnetic field)

Next step:

Apply an external magnetic field at room temperature using a setup with a permanent magnet

 \longrightarrow room temperature skyrmions?

Acknowledgments

Prof. Dr. Roland Wiesendanger Dr. Kirsten von Bergmann Dr. André Kubetzka Dr. Pin-Jui Hsu Dr. Thomas Eelbo Niklas Romming Lorenz Schmidt

Funded by the Horizon2020 Framework Programme of the European Union

Room temperature magnetic structure

Differential conductance, U = -0.7 V, I = 1 nA, B = 0 T, Fe coated W tip

- Ferromagnetic domains (and switching) still visible on the 4th and 5th layers
- No spirals visible on the majority of the 3rd layer areas

Differential conductance, U = -0.7 V, I = 1 nA, B = 0 T, Fe coated W tip

 Only a few small 3rd layer spots exhibit a magnetic pattern

Effect of the stray field of the ferromagnetic tip?

Structural model for the double lines areas on the 3rd layer

Structural model for the dense lines areas on the 3rd layer

- Epitaxial double layer below (non-reconstructed areas)
- Distorted bcc(110) Fe layer on top

Bai An et al. Growth and structural transition of Fe ultrathin films on Ni(111) investigated by LEED and STM. . Phys. Rev. B 79 (8, 2009), page 085406.