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The Nitrogen Vacancy (NV) center in diamond

» Defect consisting of a N atom and a vacancy inside the C lattice
» Equivalent to an artificial atom with levels inside the diamond gap

» Detection of the photoluminescence of single emitters at room
temperature

[ A. Gruber et al. Science 276
(1997), 2012-2014
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Use the NV center as a precise magnetometer
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Use the NV center as a precise magnetometer
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Use the NV center as a precise magnetometer

Spin-dependent fluorescence Optically Detected Magnetic Resonance
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Qualitative measurement mode (“quenching”)
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» Scanning and recording the
photoluminescence at each pixel

» Localization of the areas producing
stray field
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[@ W. Akhtar et al. Physical Review Applied 11 (2019), 034066



Two measurement modes available

v

Quantitative mode
B, <5mT

Gives access to the precise value of the
stray field along the NV axis,
sensitivity 1T Hz 2

Need to measure a spectrum at each
pixel to localize the resonance

Requires a microwave excitation
Slow, sensitive to drift

Antiferromagnetic cycloid in BiFeO3
poster A. Haykal tomorrow
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Qualitative mode
“Quenching”

B, >5mT
Localize the areas producing a large
stray field
Only need to record the
photoluminescence at each pixel
No microwave excitation required

Strength of the measured field
unknown



Synthetic antiferromagnets

Ferromagnetic layers coupled antiferromagnetically by the RKKY interaction through a
non-magnetic Ru layer

» Compensation of the dipolar stray field from

—— cach laver
Lil Co Lid — stabilization of smaller skyrmions

» Compensation of the skyrmion Hall effect
— movement parallel to the current

T T T Co T T T Bx Zhang et al. Nature Communications 7 (2016), 10293
= » Small stray field expected at the surface
Ta

— Use NV magnetometry!




Domain walls in a SAF

» Sample with out-of-plane anisotropy, large antiferromagnetic domains
» Domain walls between oppositely magnetized areas measured in quenching mode!
» PL quenching rate 5to 10 %
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Domain walls in a SAF
» Sample with out-of-plane anisotropy, large antiferromagnetic domains
» Domain walls between oppositely magnetized areas measured in quenching mode!
» PL quenching rate 5to 10 %
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A not perfectly compensated SAF?

Stray field expected for a
perfectly compensated state
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A not perfectly compensated SAF?
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A shift between the layers?

Stacks of N AF coupled multilayers
consisting of X FM coupled layers
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» Creation of an
uncompensated region at
the wall = larger stray field

» Gain in dipolar energy

» Loss in interlayer exchange

N=10,X=5 N=4,X=7

B o. Hellwig et al. J. Magn. Magn. Mater. 319
(2007), 13-55
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Simulation of the expected PL
quenching in our system
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Same observations for spirals and skyrmions

PL
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Same observations for spirals and skyrmions
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Quantitative measurements

» We observe the magnetic state in the SAF in quenching mode.
» The field required to induce this quenching is much larger than what we can expect.
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PL quenching induced by magnetic noise
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PL quenching induced by magnetic noise

Optical pumping dark ES )
. . High
NV spin polarized 2.87GHz oL
inm; =0 bright . o)

Magnetic
noise around 3 GHz

Faster spin dark =.=.= [£1)
. Lower
relaxation 2.87 GHz
4 PL
(smaller Ty) bright

® 0)




PL quenching induced by magnetic noise

Proof of principle

» Molecules containing Gd, producing
magnetic noise with a large spectrum
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Are we detecting thermally activated magnons in the domain walls?

Thermal magnons detected by Ty measurements
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©  Experiment: waves in domains
Experiment: waves in domain wall
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[ V. Sluka et al. Nature Nanotechnology 14 (2019), 328-333

Planned experiments
» More quantitative
measurements on the SAF

» Measurement of T; inside a
domain and on a wall
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