Scanning NV center microscopy for nanoscale magnetic characterization

Aurore Finco

Laboratoire Charles Coulomb Team Solid-State Quantum Technologies (S2QT)

CNRS and Université de Montpellier, Montpellier, France

SpinCharac days, January 28th 2025, Lyon slides available at https://magimag.eu

Scanning NV center microscopy

Principle: Integration of a quantum sensor in a scanning probe microscope

Our sensor: the Nitrogen-Vacancy center

- High sensitivity
- Nanoscale spatial resolution
- Non perturbative
- Quantitative
- Versatility

🗟 J.-P. Tetienne et al. Nat. Commun. 6 (2015), 6733

M. L. Palm et al. Science 384 (2024), 465

B. G. Simon et al. Nano Letters 22 (2022), 9198

J.-P. Tetienne et al. Nat. Commun. 6 (2015), 6733

M. L. Palm et al. Science 384 (2024), 465

A. Arivaratne et al. Nat. Commun. 9 (2018), 2406

M. L. Palm et al. Science 384 (2024), 465

🖥 J.-P. Tetienne et al. Nat. Commun. 6 (2015), 6733

A. Ariyaratne et al. Nat. Commun. 9 (2018), 2406

W. S. Huxter et al. Nat. Phys. 19 (2023), 644

B. G. Simon et al. Nano Letters 22 (2022), 9198

Spin-dependent fluorescence

Spin-dependent fluorescence

4

Quantum sensing with a NV center

The ingredients of a scanning NV microscope

B. M. Chernobrod and G. P. Berman. J. Appl. Phys. 97 (2004), 014903

Setups@L2C: Balbuzard

Home made scanning NV microscope at RT

Roméo Beignon

- Attocube AFM
- Home-made confocal microscope
- Coils to go up to 1 mT in any direction
- Controlled with custom Pymodaq plugins

Setups@L2C: Goéland

Home made scanning NV microscope at 4 K

Carolin Schrader

- Attocube AFM
- Home-made confocal microscope
- Operation at 4 K (or RT)
- Superconducting vector magnet up to 0.5 T in any direction
- Compatible with probes with integrated antenna from Qzabre

Setups@L2C: Kamichi

Commercial ProteusQ from Qnami, RT

Elias Sfeir

- Commercial microscope from Qnami
- Good AFM from Horiba
- Operation at room temperature
- Magnetic field applied roughly out-of-plane by a permanent magnet around the objective (a few mT)

Setups@L2C: Oréophase

Commercial QSM from Qzabre, RT

Elijah Wane

- Commercial microscope from Qzabre
- Operation at room temperature
- Vector electromagnet, field up to 80 mT in any direction
- Advanced spin manipulation protocols included

Some examples

Strong field regime

Magnetization in 2D flakes

Imaging of antiferromagnetic textures

Detection of spin waves

Some examples

Strong field regime

Photoluminescence extinction at ferromagnetic

In a strong off-axis field, we lose:

- the linearity
- the photoluminescence
- the ODMR contrast

But we can use this to image ferromagnets which produce strong fields!

I. Gross et al. Phys. Rev. Mater. 2 (2018), 024406

Some examples

Magnetization in 2D flakes

Magnetic imaging of 2D magnets flakes

L. Thiel et al. Science 364 (2019), 973-976

F. Fabre et al. Phys. Rev. Mater. 5 (2021), 034008

Q.-C. Sun et al. Nat. Commun. 12 (2021), 1989

M. A. Tschudin et al. Nat. Commun (2024), 6005

Ask Carolin about this!

Collaboration: Institut Néel, Grenoble (A. Purbawati, J. Coraux, N. Rougemaille)

2D ferromagnet at room temperature with in-plane magnetization

Collaboration: Institut Néel, Grenoble (A. Purbawati, J. Coraux, N. Rougemaille)

2D ferromagnet at room temperature with in-plane magnetization

Collaboration: Institut Néel, Grenoble (A. Purbawati, J. Coraux, N. Rougemaille)

2D ferromagnet at room temperature with in-plane magnetization

Collaboration: Institut Néel, Grenoble (A. Purbawati, J. Coraux, N. Rougemaille)

Some examples

Imaging of antiferromagnetic textures

The complex antiferromagnetic state of BiFeO₃

G-type antiferromagnet

The complex antiferromagnetic state of BiFeO₃

G-type antiferromagnet

Fully compensated cycloid \rightarrow No stray field!

M. Ramazanoglu et al. Phys. Rev. Lett. 107 (2011), 207206

The complex antiferromagnetic state of BiFeO₃

G-type antiferromagnet

Spin density wave Weak uncompensated moment \rightarrow Small stray field

M. Ramazanoglu et al. Phys. Rev. Lett. 107 (2011), 207206

Imaging the cycloid in ultrathin BiFeO₃ films

Piezoresponse force microscopy image Ferroelectric domains

Reminder: The wavevector \vec{k} of the cycloid is always perpendicular to \vec{P}

NV image Field from the spin density wave

I. Gross et al. Nature 549 (2017), 252-256

Note: the iso-B mode

Design of multiferroic solitons

Collaboration: LAF, Palaiseau (A. Chaudron, K. Bouzehouane, S. Fusil, V. Garcia) SPEC, Saclay (Z. Li, J.-Y. Chauleau, M. Viret)

A. Chaudron et al. Nat. Mater. 23 (2024), 905

Some examples

Detection of spin waves

Some examples

Strong field regime

Detection of spin waves

Detecting the stray field from spin waves

First approach

Use the microwave stray field of the spin wave to drive

the NV center magnetic transition

Detecting the stray field from spin waves

First approach

Use the microwave stray field of the spin wave to drive the NV center magnetic transition

Second approach

Detect the magnetic noise from thermal spin waves

A. Finco et al. Nat. Commun. 12 (2021), 767

Measuring magnetic noise with NV relaxometry

Relaxation rate $\Gamma_1 \propto S_{B_\perp}(f_{NV})$ magnetic field spectral density at the resonance frequency f_{NV}

Measuring magnetic noise with NV relaxometry

Relaxation rate $\Gamma_1 \propto S_{B_\perp}(f_{NV})$ magnetic field spectral density at the resonance frequency f_{NV}

Measuring magnetic noise with NV relaxometry

Relaxation rate $\Gamma_1 \propto S_{B_\perp}(f_{NV})$ magnetic field spectral density at the resonance frequency f_{NV}

Thermal spin waves confined in domain walls

- NV frequency slightly below the gap, in the tail of power spectral density, which is the reason why we detect some noise when approaching the tip.
- No gap in the domain walls, presence of modes at the NV frequency: the NV center is more sensitive to the noise from the walls!

Thermal spin waves confined in domain walls

- NV frequency slightly below the gap, in the tail of power spectral density, which is the reason why we detect some noise when approaching the tip.
- No gap in the domain walls, presence of modes at the NV frequency: the NV center is more sensitive to the noise from the walls!

A. Finco et al. very soon on arXiv (2025)

Gradiometry and electrometry

Gradiometry: use a spin echo sequence to improve the magnetic sensitivity

W. S. Huxter et al. Nat. Commun. 13 (2022), 3761

Gradiometry and electrometry

Gradiometry: use a spin echo sequence to improve the magnetic sensitivity

This approach can be followed to detect Stark shift, much weaker, and therefore electric field!

Ferroelectric domain in PZT

W. S. Huxter et al. Nat. Phys. 19 (2023), 644

Ask Elijah about this!

W. S. Huxter et al. Nat. Commun. 13 (2022), 3761

Thermometry

Crystal dilatation leads to a shift of the resonance

Ask Elias about this!

Thermometry

Crystal dilatation leads to a shift of the resonance

Nanowire of doped Si from CEA Grenoble $I = 60 \,\mu\text{A}$

E. Sfeir et al. in preparation (2025)

Summary and further reading

Scanning NV center microscopy is a powerful and versatile imaging tool for nanoscale magnetic phenomena and more!

- S. Hong et al. MRS Bulletin 38 (2013), 155–161
- L. Rondin et al. Rep. Prog. Phys. 77 (2014), 056503
- F. Casola et al. Nat. Rev. Mater. 3 (2018), 17088
- A. Laraoui and K. Ambal. APL 121 (2022), 060502
- Y. Xu et al. Photonics Research 11 (2023), 393–412
- A. Finco and V. Jacques. APL Mater. 11 (2023), 100901
- A. Finco. Techniques de l'ingénieur (2024), R6803

Interested in NV microscopy? Join us! PhD student and postdoc wanted!

https://solidstatequantumtech-l2c.fr/