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Chirality
The aspect of a structure or property that renders it distinguishable from its mirror image.
Term introduced by Kelvin in 1904. V. Simonet et al. Eur. Phys. J. Special Topics 213 (2012), 5

Pasteur (1848): chirality in chemistry

A. Sevin. Bibnum. Textes fondateurs de la science (2012)
Crucial in chemistry and biology.Life is homochiral.

Magnetic chirality
Quantity that should indicate the sense of spin rotationwhen moving along oriented loops or lines
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What can we learn from magnetic chirality?

Insight about the magnetic interactions inside the sample: are the structures stabilized by
dipolar effects, by Dzyaloshinkii-Moriya interaction, what is the sign of the DMI, etc?

Objects stabilized by dipolar couplings
: no fixed chirality

M. Heigl et al. Nat. Commun. 12 (2021), 2611

Objects stabilized by DMI
: single chirality/rotational sense

N. Romming et al. PRL 114 (2015), 177203
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How can we probe magnetic chirality?

Measure the direction of the magnetization(LTEM, PEEM, SP-STM, ...)

M. Heigl et al. Nat. Commun. 12 (2021), 2611

Measure quantitatively the stray fieldproduced by the texture

J.-P. Tetienne et al. Nat. Commun. 6 (2015), 6733

: Scanning NV magnetometry

4
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Scanning NV center microscopy to probe stray fields

Implanted singleNV center

Confocalmicroscopeobjective

DiamondAFM tip

NV

d ∼ 50 nm
Spatialresolution

P. Maletinsky et al. Nature Nano. 7 (2012), 320–324
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Magnetometry with NV centers
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Another approach: relaxometry

NV spin
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Effect of magnetic noise on the emitted signal
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Noise-based imaging mode

Principle: localize magnetic textures via spin wave noise

NV spin

NV spin

domain wall

Thermal agitationSpin waves

B. Flebus et al. Phys. Rev. B 98 (2018), 180409
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Synthetic antiferromagnets

Collaboration UMR CNRS/Thales: William Legrand, Fernando Ajejas, Karim Bouzehouane,
Nicolas Reyren, Vincent Cros

Two ferromagnetic layers coupled antiferromagnetically

RKK
Y

PtRuCoPtRuCoPt
W. Legrand et al. Nat. Mat. 19 (2020), 34

• No net magnetic moment
• Compensation of dipolar effects
• Small stray field due to vertical spacing
: test system for noise imaging
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Domain wall in a SAF

250 nm
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A. Finco et al. Nat. Commun. 12 (2021), 767
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Measurement of the relaxation time T1
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Origin of the noise contrast : spin waves!
Collaboration C2N: Jean-Paul Adam, Joo-Von Kim
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• NV frequency slightly below the gap, in the tail of power spectral density, which is the reason whywe detect some noise when approaching the tip.
• No gap in the domain walls, presence of modes at the NV frequency: the NV center is more

sensitive to the noise from the walls!
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Stabilization and observation of magnetic skyrmions

biaslayer
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We are not probing the internal modes but the scattering of spin waves on the skyrmions

14



Stabilization and observation of magnetic skyrmions

biaslayer

SAF

Hbias

W. Legrand et al. Nat. Mat. 19 (2020), 34

500 nm

0.9 1.0norm. PL

Top layer

300 nm

Bottom layer

300 nm 0.25

1.0 µT2

〈 ∥δ
B2 ⊥

,i
∥〉

We are not probing the internal modes but the scattering of spin waves on the skyrmions
14



Pinned large skyrmions
Collaboration Spintec: Van-Tuong Pham, Olivier Boulle
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Various skyrmion noise maps
The PL drop is not uniform around the skyrmions, is this only related to their irregular shape?

300 nm 250 nm 300 nm 300 nm 300 nm 300 nm

300 nm 250 nm 350 nm 350 nm 350 nm 500 nm

400 nm 400 nm 500 nm 300 nm 300 nm 300 nm
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Extracting the signal around the skyrmion
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Expected noise profile for other skyrmion types

Collaboration C2N: Joo-Von Kim
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What about stray field maps?

Left Bloch Left Néel (CCW) Right Bloch Right Néel (CW)

-1 0 1
BNV (mT)

: Difficult to distinguish CCW and CW, especially if there is disorder in the sample.
: Rather use noise ?
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Is the detected noise really lower for CW Néel textures ?
Initial stack
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Expected noise level for each domain wall chirality
Collaboration C2N: Joo-Von Kim
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Why is there such a difference?

1. The walls in the top and the bottom layer have a slightly different width

: the effect is stillthere when we force identical walls in the calculation.

2. Something different in the dynamics?

The magnetization fluctuations are similar for bothchiralities of the Néel walls.

3. Something similar to this effect?

N. Mikuszeit et al. PRB 84 (2011), 054404
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Summary

M. Rollo et al. PRB 103 (2021), 235418
A. Finco et al. Nat. Commun. 12 (2021), 767

A. Finco et al. in preparation (2023)
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