Probing nanomagnetism with quantum sensors: from antiferromagnets to 2D materials

Aurore Finco

Laboratoire Charles Coulomb Team Solid-State Quantum Technologies (S2QT)

CNRS and Université de Montpellier, Montpellier, France

Rice-Europe Workshop on spintronics, May 23th 2023

slides available at https://magimag.eu

How can we use a quantum system to probe nanomagnetism? Noise with a component at f_0 magnetic Spin Relaxation fo resonance ground state rate frequency External static perturbation \vec{B} . \vec{E} . T. P Resonant microwave field Shift of the energy levels Driving the transition

Outline

Imaging of complex antiferromagnetic textures

Outline

Imaging of complex antiferromagnetic textures

- Optical manipulation and reading
- Ambient conditions

Nitrogen-Vacancy defect in diamond

- Optical manipulation and reading
- Ambient conditions

Spin-dependent fluorescence

Nitrogen-Vacancy defect in diamond

- Optical manipulation and reading
- Ambient conditions

Spin-dependent fluorescence dark = $|\pm 1\rangle$ 2.87 GHz $|0\rangle$ NV ground state spin S = 1green laser excitation NV polarized in $|0\rangle$

- Optical manipulation and reading
- Ambient conditions

- Optical manipulation and reading
- Ambient conditions

- Optical manipulation and reading
- Ambient conditions

Nitrogen-Vacancy defect in diamond

- Optical manipulation and reading
- Ambient conditions

4

Diamond AFM tip

5 μm anami

Implanted single NV center

Implanted single NV center

Implanted single NV center

Implanted single NV center

Implanted single NV center

Bismuth ferrite, a room-temperature multiferroic

Electric polarization

Ferroelectric phase (T<1100 K)

G. Catalan et al. Adv. Mater. 21 (2009), 2463-2485

Bismuth ferrite, a room-temperature multiferroic

P[111]

Ferroelectric phase (T<1100 K)

G. Catalan et al. Adv. Mater. 21 (2009), 2463-2485

6

G-type antiferromagnetic phase ($T_N = 643$ K)

Magnetism

Electric polarization

The effects of magnetoelectric coupling in BiFeO₃

Fully compensated cycloid

 \rightarrow No stray field!

The effects of magnetoelectric coupling in BiFeO₃

Spin density wave Weak uncompensated moment \rightarrow Small stray field

M. Ramazanoglu et al. Phys. Rev. Lett. 107 (2011), 207206

The effects of magnetoelectric coupling in BiFeO₃

M. Ramazanoglu et al. Phys. Rev. Lett. 107 (2011), 207206

The cycloid in a low strained BiFeO₃ thin film

Collaborations: UMR CNRS/Thales, Palaiseau (V. Garcia, S. Fusil) CEA SPEC, Gif-sur-Yvette (J.-Y. Chauleau, M. Viret)

PFM image ferroelectric domains

I. Gross et al. Nature 549 (2017), 252–256

The cycloid in a low strained BiFeO₃ thin film

Collaborations: UMR CNRS/Thales, Palaiseau (V. Garcia, S. Fusil) CEA SPEC, Gif-sur-Yvette (J.-Y. Chauleau, M. Viret)

I. Gross et al. Nature 549 (2017), 252–256

The cycloid in a low strained BiFeO₃ thin film

Collaborations: UMR CNRS/Thales, Palaiseau (V. Garcia, S. Fusil) CEA SPEC, Gif-sur-Yvette (J.-Y. Chauleau, M. Viret)

I. Gross et al. Nature 549 (2017), 252–256

Collaborations: UMR CNRS/Thales, Palaiseau (V. Garcia, S. Fusil) CEA SPEC, Gif-sur-Yvette (J.-Y. Chauleau, M. Viret)

Collaborations: UMR CNRS/Thales, Palaiseau (V. Garcia, S. Fusil) CEA SPEC, Gif-sur-Yvette (J.-Y. Chauleau, M. Viret)

Collaborations: UMR CNRS/Thales, Palaiseau (V. Garcia, S. Fusil) CEA SPEC, Gif-sur-Yvette (J.-Y. Chauleau, M. Viret)

Collaborations: UMR CNRS/Thales, Palaiseau (V. Garcia, S. Fusil) CEA SPEC, Gif-sur-Yvette (J.-Y. Chauleau, M. Viret)

M. Ramazanoglu et al. Phys. Rev. Lett. 107 (2011), 207206

$$\begin{cases} A = \frac{\mu_0 m_{\text{DM}}}{\sqrt{3} a^3} \sinh\left(\frac{ka}{2\sqrt{2}}\right) \\ S = e^{-kz/\sqrt{2}} e^{ik(y-z)/\sqrt{2}} \frac{1 - e^{-kt(1+i)/\sqrt{2}}}{1 - e^{-ka(1+i)/\sqrt{2}}} \end{cases}$$

Rotation of the cycloid propagation direction measured in real space...

Rotation of the cycloid propagation direction measured in real space...

Resonant X-ray scattering

Resonant X-ray scattering

Polar plot of $\frac{2\pi}{\lambda}$ vs \vec{k} direction

Resonant X-ray scattering

Polar plot of $\frac{2\pi}{\lambda}$ vs \vec{k} direction

Resonant X-ray scattering

Polar plot of $\frac{2\pi}{\lambda}$ vs \vec{k} direction

Resonant X-ray scattering

Polar plot of $\frac{2\pi}{\lambda}$ vs \vec{k} direction

Surface effect? Only \vec{k}_1 seen by neutrons

D. Lebeugle et al. Phys. Rev. Lett. 100 (2008), 227602

Universal patterns in lamellar systems

Block copolymer

Period 40 nm

T. A. Witten. Phys. Today 43 (1990), 21

Liquid crystals Period 800 nm

Y. Bouligand. Dislocations in solids (1983), Chap. 23

BiFeO₃ magnetic cycloid Period 64 nm

A. Finco et al. Phys. Rev. Lett. 128 (2022), 187201

Ferrimagnetic garnet Period 8 µm

M. Seul et al. Phys. Rev. A 46 (1992), 7519

FeGe magnetic helix Period 70 nm

P. Schönherr et al. Nat. Phys. 14 (2018), 465

Fluid diffusion Period 250 μm

Q. Ouyang et al. Chaos 1 (1991), 411

Topological defects in BiFeO₃

 $+\pi$ -disclination

Edge dislocation

Perspective: electrical control?

Outline

Imaging of complex antiferromagnetic textures

Collaboration: Institut Néel, Grenoble (A. Purbawati, J. Coraux, N. Rougemaille)

Scanning NV center magnetometry on CrTe₂ 2D ferromagnet at room temperature with in-plane magnetization

F. Fabre et al. Phys. Rev. Mater. 5 (2021), 034008

Collaboration: Institut Néel, Grenoble (A. Purbawati, J. Coraux, N. Rougemaille)

F. Fabre et al. Phys. Rev. Mater. 5 (2021), 034008

Collaboration: Institut Néel, Grenoble (A. Purbawati, J. Coraux, N. Rougemaille)

Collaboration: Institut Néel, Grenoble (A. Purbawati, J. Coraux, N. Rougemaille)

Defects in h-BN

- h-BN is a wide bandgap material (about 6 eV)
- Single photon emitters were known in h-BN

T. T. Tran et al. Nature Nanotechnology 11 (2016), 37

Defects in h-BN

- h-BN is a wide bandgap material (about 6 eV)
- Single photon emitters were known in h-BN
- A spin defect was identified in 2020

A. Gottscholl et al. Nat. Mater. 19 (2020), 540

Objective: a quantum sensing foil integrated in the van der Waals heterostructure

Creating ensembles of boron vacancies in h-BN

Collaboration: Kansas State University (J. Li, J. Edgar)

1mm

S. Liu et al. Chem. of Mater. 30 (2018), 6222

Creating ensembles of boron vacancies in h-BN

Collaboration: Kansas State University (J. Li, J. Edgar)

1mm

S. Liu et al. Chem. of Mater. 30 (2018), 6222

• Excitation at 532 nm

• Ambient conditions

A. Haykal et al. Nat. Commun. 13 (2022), 4347

Measuring magnetic fields with $V_{\rm B}^-$

Spin-dependent fluorescence

Magnetic field sensitivity

$$\eta \sim 0.7 \, rac{1}{\gamma_e} \, rac{\Delta
u}{\mathcal{C} \sqrt{\mathcal{R}}}$$

P. Kumar et al. Phys. Rev. Appl. 18 (2022), L061002

Magnetic field sensitivity

P. Kumar et al. Phys. Rev. Appl. 18 (2022), L061002

Imaging a CrTe₂ flake

Collaboration: Institut Néel, Grenoble and LPCNO, Toulouse

P. Kumar et al. Phys. Rev. Appl. 18 (2022), L061002

Imaging a CrTe₂ flake

Collaboration: Institut Néel, Grenoble and LPCNO, Toulouse

P. Kumar et al. Phys. Rev. Appl. 18 (2022), L061002

Comparison with simulations

Two averaging procedures are necessary:

- Vertically, over the h-BN film thickness
- Laterally, over the gaussian profile of the laser beam

 \rightarrow Being really quantitative is difficult, using thinner flakes would help!

Using thinner flakes

- PL quenching effect at the metallic surface of CrTe₂
- Need for larger laser excitation power
- Heating of the magnetic material, crossing T_C

Summary

Imaging topological defects in a multiferroic antiferromagnet with NV centers

A. Finco et al. Phys. Rev. Lett. 128 (2022), 187201

Acknowledgments

L2C, Montpellier

Pawan Kumar, Florentin Fabre, Alrik Durand, Tristan Clua-Provost, Zhao Mu, Bernard Gil, Guillaume Cassabois, Isabelle Robert-Philip, Vincent Jacques

UMR CNRS/Thales, Palaiseau

Pauline Dufour, Vincent Garcia, Stéphane Fusil, Karim Bouzehouane

SPEC, CEA Gif-sur-Yvette Anne Forget, Dorothée Colson, Jean-Yves Chauleau, Michel Viret

Synchrotron Soleil Nicolas Jaouen

Kansas State University, USA Jiahan Li, James Edgar

Institut Néel, Grenoble, France

Johann Coraux, Nicolas Rougemaille

LPCNO, Toulouse, France Cédric Robert, Jules Fraunie, Pierre Renucci, Xavier Marie

European Research Council Established by the European Commission

anr[®] agence nationale de la recherche

