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LiYbF4 is a quantum antiferromagnet, with TN = 128 mK, in which the magnetic moments
are coupled through dipolar interactions and present a strong planar anisotropy. The magnetic
moments have the same characteristics in LiErF4, which was established as a model whose ther-
mal phase transition belongs to the XY/h4 two-dimensional universality class1. Both LiErF4 and
LiYbF4 exhibit a quantum phase transition when a DC �eld is applied along the crystallographic
c-axis, with Hc = 4 kOe and 4.8 kOe respectively. The numerical part of this study consists in
further work on a code for classical Monte Carlo simulations based on a classical e�ective model
derived from the quantum model, in order to compute thermodynamical quantities and critical ex-
ponents. This Monte Carlo code can then be further expanded to study disordered compounds such
as LiHo1−xErxF4 and LiHo1−xYbxF4. Related to this, an experimental protocol was developed to
determine the composition of these samples using measurements of their magnetic moments. On the
experimental side, this work represents the �rst comprehensive study of the low-temperature prop-
erties of LiYbF4. The H-T phase diagram of LiYbF4 has been mapped out using AC susceptibility
measurements of single crystals in a dilution refrigerator.

I. INTRODUCTION

The LiREF4 (where RE is for rare earth) compounds
are anisotropic dipolar coupled magnetic systems in
which the long-range dipolar interaction between the
magnetic moments of the rare earth ions dominates the
short-range exchange interaction. Luttinger and Tisza
published in 19462 a theoretical discussion about the
emergence of a long range order in this kind of systems
and found that both ferromagnetic and antiferromagnetic
order can appear.
The LiREF4 systems are therefore used to study theo-
retical microscopic models : the Hamiltonian describing
the systems is quantitatively known, and thus numerical
predictions can be compared to experimental data. De-
pending on the rare earth ion considered, ferromagnetic
(with Ho for instance) and antiferromagnetic (with Er
or Yb) behaviour are observed at low temperature. The
LiREF4 systems can also be diluted with non magnetic Y
or be a mixture of several types of ions. Thus disordered
systems like LiHo1−xErxF4 or LiHo1−xYbxF4 in which a
spin glass phase was observed3 can be obtained.
Here, the low temperature behaviour of LiYbF4 is investi-
gated by AC susceptibility measurements to map out the
H-T phase diagram, mean �eld and Monte Carlo simula-
tions. LiYbF4 is an antiferromagnet which possesses the
same type of planar anisotropy in the xy plane as LiErF4.
The interest in LiYbF4 is that the crystal �eld provides
a larger planar anisotropy than in LiErF4, which should
therefore be a cleaner model dipolar-coupled XY antifer-
romagnet. In these two compounds, two types of phase
transitions are observed: the usual thermal phase tran-
sition, driven by the thermal �uctuations, and a quan-
tum phase transition, which is a transition occurring at
T = 0 K when a transverse magnetic �eld is applied.
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Figure 1: Schema of a unit cell of LiREF4. For clarity
reasons, the �uoride ions are not represented.

II. DESCRIPTION OF THE SYSTEM

A. The LiREF4 structure

The crystalline structure of LiREF4 is tetragonal and
belongs to the space group I41/a, the n◦88 in the In-
ternational Tables for Cristallography4 (Scheelite struc-
ture). The magnetic moments are carried by the rare
earth ions, whose positions in the unit cell are shown in
�gure 1. The unit cell contains 4 rare earth ions.
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Table I: Quantum numbers and lattice parameters5 for the
di�erent rare earth ions considered.

Yb Er Ho

L (orbital momentum) 3 6 6
S (spin momentum) 1/2 3/2 2
J (total momentum) 7/2 15/2 8
g (Landé factor) 8/7 6/5 5/4
µeff (µB) 4.5 9.6 10.6
Lattice constant a (Å) 5.132 5.162 5.175
Lattice constant c (Å) 10.59 10.70 10.75

In the following, di�erent rare earth ions will be consid-
ered: mostly Yb (Z = 70), but also Er (Z = 68) and Ho
(Z = 67). Their electronic con�guration are respectively
4f14,4f12 and 4f11. These ions have di�erent quantum
numbers for the orbital momentum, leading to di�erent
values of their magnetic moment: an e�ective magnetic
moment can be de�ned as µeff = g µB

√
J(J + 1), where

g is the Landé factor, µB ' 5.78 · 10−2 meV/T the Bohr
magneton and J the total momentum quantum number.
Er and Ho have both large moments and their values are
close while the moment of Yb is twice as small. The
useful parameters are regrouped in the table I.

B. Single-ion Hamiltonian

The Hamiltonian can be separated in two parts, single-
ion and interactions with neighbouring ions. The single-
ion part can itself be separated in several contributions:
the crystal �eld, the Zeeman Hamiltonian and the hyper-
�ne coupling.

H = Hcf +HZ +Hhyp +Hint (1)

1. The crystal �eld

The main contribution to the single-ion Hamiltonian is
the crystal �eld, which is due to the electric �eld induced
by the charge distribution in the lattice and which creates
the magnetic anisotropy by acting on the 4f electrons. A
convenient way to express the Hamiltonian Hcf is to use
the Stevens operators (which are de�ned in Appendix A).

Hcf =
∑
i

∑
lm

Bml Ô
m
l (~Ji) (2)

The parameters for each rare earth ion were measured
using neutron scattering. For Yb, Er and Ho, the
crystal �eld parameters are given in the table X. The
dominant part of the crystal �elds of LiHoF4 and of
LiErF4 and LiYbF4 have opposite signs, leading to dif-
ferent anisotropies, and thus to completely di�erent be-
haviours. This term is ∝ J2

z , with a negative factor for
LiHoF4 which makes ferromagnetic order energetically

x y

z

Figure 2: Schema of the Bi-Layered AntiFerroMagnetic
(BLAFM) ordered structure in LiErF4 and LiYbF4. On the
left picture, the moments are aligned parallel to the x axis,
on the right they are aligned parallel to the y axis. There is
a rotational symmetry in the xy plane but each layer rotates
in a di�erent way as its neighbours.

favourable. Thus LiHoF4 is a model magnet for the Ising
model in a transverse �eld � at low temperature the
Ho moments align in the direction of the c-axis, lead-
ing to a ferromagnetic long range order. In LiErF4 and
LiYbF4, the factor is positive and the moments are pref-
erentially in the ab plane and interact antiferromagnet-
ically, forming at low temperature a bi-layered antifer-
romagnetic (BLAFM) structure. This structure presents
a rotational symmetry in the ab plane. It can indeed
be shown that the dipolar coupling is invariant under a
rotation of the magnetic moments in each layer of an an-
gle (−1)lθ around the c-axis, where l is the layer index.
Nevertheless, this transformation does not leave invari-
ant the crystal �eld, which retains only a four-fold ro-
tational symmetry around the c-axis. Consequently the
two equivalent orderings are shown on the �gure 2. In
LiYbF4, LiErF4 and LiHoF4, the ground state of Hcf is
doubly degenerate and the �rst excited state has a much
higher energy. The gap between the ground-state and
the �rst excited state for LiYbF4 is 334.8 K, 11.5 K for
LiHoF4 and 25.7 K for LiErF4. Hence, at low temper-
ature, the excited states of the crystal �eld will not be
considered. The table X gives two sets of parameters for
the crystal �eld in LiYbF4. Indeed, all the computations
were done with the �rst set and the result for the crit-
ical �eld was 50 times larger than the measured value.
Finally, by �tting the neutron scattering data20 and the
susceptibility data from those work, a new set of param-
eters was found, which gives, in mean �eld, a value of
the critical �eld which corresponds to the experimental
value. The mean �eld calculations were performed again
with these new parameters but the Monte Carlo simula-
tion was too slow to be run again. Interestingly, the new
values for the parameters are close from the previous one,
they actually are within the error bar but they lead to a
totally di�erent behaviour at 0 K, for the quantum phase
transition.
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2. The Zeeman term

Another part of the single-ion Hamiltonian is the Zee-
man term, the coupling of the moments with the external
magnetic �eld. Thus, the Zeeman Hamiltonian is written
as :

HZ = −µB gL ~J. ~B, (3)

where gL is the Landé factor which depends on the elec-

tronic con�guration of the ion, ~J represents the total mo-

mentum operator and ~B is the external �eld. The e�ect
of the Zeeman interaction is to align the magnetic mo-
ments in the direction of the external �eld.

3. The hyper�ne coupling

The last part of the single-ion Hamiltonian is the hy-
per�ne coupling, which is the coupling between the elec-
tronic magnetic moment and the nuclear spin. For an
isotropic interaction, the corresponding Hamiltonian is
given as:

Hhyp = A ~J · ~I, (4)

where ~I is the nuclear spin operator and A is the cou-
pling constant. For Ho, the only stable isotope (165Ho)
possesses a nuclear spin of 7/2 and AHo = 3.36 µeV6.
Er has 6 stable isotopes but only one of them, 167Er, pos-
sesses a non-zero nuclear spin of 7/2. Its natural abun-
dance is 22.8% and AEr = 0.43 µeV7.
There are 7 stable isotopes of Yb, and two of them carry
a nuclear moment: 171Yb, whose quantum number is 1/2
and whose natural abundance is 14.3%, and 173Yb, whose
quantum number is 5/2 and whose natural abundance is
16.2%8. The coupling constants have the following val-
ues: A171

Yb = 11.0 µeV and A173
Yb = −3.0 µeV9.

C. Interaction Hamiltonian

1. Exchange interaction

The exchange interaction is a short-range pair interac-
tion between magnetic moments, whose Hamiltonian is
given by:

Hex =
∑
i,j

(n.n.)

Jij ~Ji · ~Jj (5)

where the sites i and j are nearest neighbours. In
LiREF4, the 4f electrons are tightly bound to the rare
earth ions and thus the exchange interaction will be neg-
ligible compared to the dipolar interaction. This interac-
tion will therefore not be considered in the following.

2. Dipolar interaction

For the materials considered herein, the dominant in-
teraction between the moments is the dipolar interaction,
which leads to antiferromagnetic order in LiYbF4 and
LiErF4 and to ferromagnetic order in LiHoF4. The dipo-
lar interactions are long-range pair interactions, therefore
all the pairs of moments in the lattice should be taken
into account in Hdip:

Hdip = −1

2

∑
i,j

gLi gLj µ
2
B
~JiDij

~Jj (6)

where Dij is the matrix for the dipole-dipole interaction
between sites i and j. Dij can be derived from the clas-
sical dipole-dipole interaction:

Dij =
µ0

4π

(
3 rijr

T
ij

||rij ||5
− δij
||rij ||3

)
(7)

Finally, the total Hamiltonian of the system is the sum of
the single-ion Hamiltonian and of the interaction Hamil-
tonian (which is reduced to the dipolar interactions be-
cause the exchange interaction is neglected).

III. NUMERICAL SIMULATION

A. Mean-�eld computation

A �rst approach to simulate the system and to take
into account the interactions between the ions is the
mean-�eld approximation. In this approximation, the
�uctuations of the moments around their equilibrium po-
sition is neglected. In the mean-�eld approximation, Ji
is replaced in Hdip (6) by (Ji − 〈 Ji 〉 ) + 〈 Ji 〉, where
(Ji − 〈 Ji 〉) is the �uctuation term and is considered
small. Then, the second order terms are neglected and
the constant is removed. Since Dij = Dji and Dij is
symmetric,

HMF
dip = −

∑
i,j

gLi gLj µ
2
B
~JiDij〈 ~Jj〉. (8)

An e�ective mean-�eld can be introduced;

~hieff =
4∑
j=1

D̃ij〈µBgLj ~Jj〉, where the i index varies

from 1 to 4, for the 4 sites in the unit cell. The D̃ij

matrices are de�ned by:

D̃ij =
N

V

(
4π

3
+
∑
cells

Dij −Nij
)
. (9)

The �rst term is the Lorentz factor10, the second one the
sum of the Dij matrices over a large number of unit cells
inside a sphere of radius 100 cells, and the third one is
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the demagnetization factor (see Appendix C). This can
be shown to be equivalent to

HMF
dip =

4∑
i=1

gLi µB
~Ji ·~hieff , (10)

in which all sites are decoupled. Once this Hamiltonian is
established, the calculation (which computes the values
only in one unit cell) is as follows:

• The matrices D̃ij are computed once at the begin-
ning.

• The moments 〈Ji〉 are initialized in a given arbi-
trary con�guration.

• The mean �elds ~hieff are computed from the current
con�guration of the moments.

• The mean �eld hamiltonians for each sites
HMF
i = Hicf +HiZ +Hihyp +Hi MF

dip are diagonalized

and the means moments 〈Ji〉 are updated.
• The di�erence ∆ =

∑
i

|〈Ji〉new − 〈Ji〉old| is eval-

uated and compared to a convergence threshold
ε = 10−6. If ∆ > ε, the algorithm returns to the
third step, if ∆ < ε, it returns the values of 〈Ji〉.

Since the �uctuations are neglected, the critical temper-
ature will be overestimated. Furthermore, as the �uc-
tuations increase at the transition, the behaviour of the
system around the transition (and hence the critical ex-
ponents) can not be accurately described by this mean
�eld approximation. However, these mean �eld simula-
tions provide a basis for comparison with the results of
the Monte Carlo simulations and the experimental data.

B. Monte Carlo simulation

1. The e�ective model

a. A quantum spin 1/2 e�ective model In the
Monte Carlo simulation, the considered Hamiltonian is
H = Hcf + HZ + Hdip. The dipolar interactions will
be treated classically. The �rst step to derive the e�ec-
tive model is then to �nd a simple model for the single
ion Hamiltonian H0 = Hcf + HZ. Since only the low
temperature behaviour will be studied here, the excited
states of the crystal �eld will almost never be reached
by the system, which will stay in the two lowest energy
states. The degeneracy is lifted when the external �eld is
applied, the doublet is split in two states with di�erent
energies. This observation leads to a simpli�ed model for
the single ion Hamiltonian, an e�ective spin 1/2 model.
To construct this model, the J operators and the single
ion Hamiltonian are projected on the subspace generated
by the two low energy states |1〉 and |2〉. Four matrices of
size 2×2, J̃x, J̃y, J̃z and H̃0 are obtained. The Ising basis
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Figure 3: Distributions ραdα and ρβdβ over 5 · 104 calls of
the function with dα = dβ = π

100
. The red lines are the

theoretical distributions.

{|+〉 , |−〉} will be the eigenbasis of J̃z in which the others
operators are then computed. With this technique, the
dimension of the Hilbert space is reduced from 2J + 1 (ie
8 for Yb, 16 for Er and 17 for Ho) to 2. The states of
this Hilbert space will be expressed in terms of the angles
de�ning the quantum state on the Bloch sphere:

|α, β〉 = cos(α) |+〉+ eiβ sin(α) |−〉 (11)

where α ∈ [0, π2 ] and β ∈ [0, 2π].
b. The classical e�ective model In the quantum

model, there are two degrees of freedom, the angles α
and β. In a classical model, for a moment whose posi-
tion is �xed at the position of the ion in the unit cell,
there are also two degrees of freedom to determine the
orientation of the moment. Thus, the e�ective classical
moment will be de�ned by the two angles α and β which
will be stored (and so will be the moment value) for each
site of the lattice. Then for these values of α and β and
of the external �eld, the mean value of the J̃ operators
and of H̃0 in the state |α, β〉 is evaluated and the classical
moment is de�ned as the mean value of J̃ in this state.
In order to perform the Monte Carlo simulation, it is also
necessary to �nd a way to change randomly the direction
of the moments. This is done by drawing randomly the
two angles α and β, with a distribution such as the states
|α, β〉 are uniformly distributed on the north hemisphere
of the Bloch sphere (see section III B 1 c). In terms of
probability distributions,

ρβ(β) =
1

2π
, β ∈ [0, 2π]

ρα(α) =
sin(α)

2
, α ∈ [0, π]

To pick uniformly a random vector on the unit sphere, the
Marsaglia method is employed11. Figure 3 shows a test
of the function which gives α and β, during which 5 · 104

random pairs (α, β) were generated. The distributions
correspond to those expected.
c. Distribution of the moments, anisotropy The

anisotropy in the xy plane for LiYbF4 and LiErF4 and
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Figure 4: De�nition of the angles θ and ϕ for the e�ective
moment.

along the z axis in LiHoF4 comes from the values of the
crystal �eld parameters and should therefore appear in
the classical e�ective model. The orientation of the mo-
ment is determined by two angles θ and ϕ which are
de�ned on the �gure 4. More precisely, the de�nitions of
θ and ϕ are the following:

tan(θ) =
〈α, β| J̃z |α, β〉√(

〈α, β| J̃x |α, β〉
)2

+
(
〈α, β| J̃y |α, β〉

)2

(12)

tan(ϕ) =
〈α, β| J̃y |α, β〉
〈α, β| J̃x |α, β〉

(13)

When α and β vary, the evolution of θ and ϕ leads to
several observations. First, a change of α only changes
θ and a change of β modi�es only ϕ. Then, the dis-
tribution of ϕ is uniform when the distribution of β is
uniform: the symmetry under rotation in the xy plane is
respected. The anisotropy appears in the θ distribution.
A �rst remark is that when α ∈ [0, π], the direction +z
is favoured, a magnetization in this direction appears at
high temperature. This magnetization is certainly not
physical, it was still observed at 50 K and there is no
reason to prefer +z to −z. The explanation for this be-
haviour is shown in �gure 5. Since ρα = sin(α)/2, the
cases where α is near 0 or π are less frequent than those
where α is around π

2 . In addition, α = π
2 leads to θ = π

2 ,

ie ~Jeff along +z whereas −z corresponds to α = 0 or π.
This explains the preference of the magnetization along
+z which is removed when α is �xed between 0 and π

2 .
The anisotropy is clearly visible in �gure 5, especially for
LiYbF4 and LiHoF4. For LiYbF4, the probability distri-
bution is sharply peaked at θ = 0, therefore the moments
are con�ned in the xy plane. For LiHoF4, θ ' ±π2 for
most of the values of α, the moments remain aligned in
the z direction. In LiErF4, the anisotropy is less pro-
nounced but marked by the in�exion point at θ = 0.
The combination of the α and β distributions with the
curves of θ for each ion leads to the distributions of θ of
the �gure 5, showing again clearly the anisotropy. The
graphs were plotted with 5.104 randomly drawn pairs
(α, β). Furthermore, the anisotropy appears also in the
norm of the moments, which depends on their direction.
When α and β vary continuously, the moment describes
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Figure 5: θ as a function of α (with β �xed to 0) and distri-
butions of θ in LiYbF4, LiErF4 and LiHoF4.

an ellipsoid, as shown in �gure 6. These ellipsoids show
also clearly the anisotropy induced by the crystal �eld.
The �gures 5 and 6 show the distributions and the ellip-
soids obtained from the two sets of crystal �eld parame-
ters for LiYbF4. The anisotropy was excessive with the
�rst set of parameters, which explains why the critical
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�eld was so much overestimated. The new set of param-
eters should give a more reasonable value for HC .
In this classical e�ective model, the number of degrees of
freedom (the two angles) is the same as in the quantum
e�ective spin 1/2 model, and the anisotropy comes from
both the norm of the moments, which depends on their
direction, and from the probability distribution of the
directions when they are randomly drawn in the Monte
Carlo algorithm.

2. The Monte Carlo algorithm

Once the e�ective model is established, the aim is to
simulate the whole system. A lattice is build in a cubic
box of L unit cells in each direction. The lattice is popu-
lated with given proportions of Yb, Er and Ho, randomly
placed. The same method as in the mean-�eld is used to
compute the dipolar interaction matrices and the inter-
action energy is computed with the classical moments.
The system evolves according to the following algorithm:
an ion is randomly picked. A couple of angles α and β are
also randomly drawn. The e�ective moment correspond-
ing to the chosen ion and the new angles is computed.
The energy variation dE between the previous con�gura-
tion and the new one (with the rotated moment) is cal-
culated. The Metropolis criterion is then used to decide
if the rotation of the moment is kept or not:

• if T = 0 K, the rotation is accepted only if dE < 0.

• if T > 0 K, if dE < 0, the rotation is accepted
and if dE > 0, it is accepted with the probability
e−dE/kBT .

This process is iterated duringNeq = 2 · 106 steps in order
to reach equilibrium (see Appendix B). Once the system

is in equilibrium, the measurement is performed during
Nmeas = 106 iterations. The magnetization and the en-
ergy are measured every Nions (the number of ions in
the system) iterations. This way, the algorithm picks
roughly every ion between two measurements. The val-
ues are averaged over a large number of steps. In LiYbF4

and LiErF4, the order parameter is the staggered mag-
netization in the xy plane. The staggered magnetization
in the x and y directions Jalt

x and Jalt
y are computed by

adding the x or y components of the four moments in the
unit cell with alternated signs:

Jalt
x = J1

x − J2
x − J3

x + J4
x

Jalt
y = J1

y + J2
y − J3

y − J4
y

and the order parameter Jalt
xy is de�ned by:

Jalt
xy =

√
(Jalt
x )2 + (Jalt

y )2

In order to have accurate values for the critical expo-
nents, the �eld and temperature scans are averaged over
a large number of realizations (around 100 measurements
with circa 10 di�erent equilibrium con�gurations).

3. Results

Using the classical e�ective model described in section
III B 1 b and the Monte Carlo algorithm, simulations
were performed for LiErF4 and LiYbF4. Indeed, the pre-
vious version of this code has already been used to study
LiErF4

12 and thus try to reproduce these results with the
new version is a way to test it. Furthermore, experimen-
tal data for LiErF4

1 are also available for comparison. In
each case, the considered system is a cubic box of L = 7
units cells, ie 1372 ions and N = 10 replicas of this box
in each direction are used to compute the dipolar inter-
actions.
a. Ordering First, it is necessary to check that the

computation leads to the expected ordered state at low
temperature. For LiErF4 and LiYbF4, without any
applied external �eld, the antiferromagnetic order (the
BLAFM structure) in the xy plane should be reached1.
Starting from randomly oriented magnetic moments and
decreasing the temperature, an ordered state is indeed
obtained in each case, as shown in �gure 7. The plotted
parameter is the staggered magnetization in the xy plane
as a function of the number of Monte Carlo steps, with a
decreasing temperature in order to be sure to reach the
equilibrium state at 0 K and not to stay in a con�guration
corresponding to a local minimum of the energy. When
a small external magnetic �eld is applied parallel to the
a-axis (respectively b-axis), the moments should align an-
tiferromagnetically along the b-axis (respectively a-axis).
The �eld breaks the symmetry in the xy plane and the
most favourable con�guration is the BLAFM structure
along the axis perpendicular to the �eld, with the mo-
ments slightly tilted in the direction of the �eld. Indeed,
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Figure 7: Apparition of the antiferromagnetic order in the
xy plane in LiErF4 and LiYbF4. The staggered magnetiza-
tion ( for LiErF4, for LiYbF4) reaches its satura-
tion value and the magnetization along the c-axis ( for
LiErF4, for LiYbF4) disappears.
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Figure 8: Apparition of the antiferromagnetic order in the
xy plane in LiErF4, in presence of an external �eld of 100 Oe
parallel to the a-axis. The staggered magnetization along y

increases until a saturation value and the moments are
tilted towards the �eld direction ( is the magnetization
along x).

this con�guration respects the interactions leading to the
antiferromagnetic order and the moments can tilt in the
direction of the �eld with a low energy cost. This e�ect
can indeed be seen in simulations of both LiYbF4 (see
�gure 8) and LiErF4.

b. Quantum phase transition At 0 K, when an ex-
ternal magnetic �eld is applied along the c-axis, a quan-
tum phase transition is observed. As the magnetization
along z increases, the strength of the dipolar interaction

decreases, which destroys the antiferromagnetic order.
However, in LiErF4, the simulation reveals the existence
of three quantum phase transitions (see �gure 9a), in-
duced by a crossing of the energy levels of the hamilto-
nian Hcf +HZ. The critical exponent βH de�ned by:

Jalt
xy ∝ |H −HC |βH

where Jalt
xy the order parameter (the staggered magneti-

zation in the xy plane) was computed for the transition
at 0.5 T. The linear �t gives βEr

H = 0.52 ± 0.05. This
exponent was also computed with experimental data:
βEr
H = 0.31 ± 0.02. The values are really di�erent but

the �t of the Monte Carlo data uses a low number of
points, the result is not really accurate.
In LiYbF4, a phase transition is observed in the sim-
ulation around 25 T (see �gure 9b), whereas a critical
�eld of 0.48 T was measured. This large di�erence is
observed with the old parameters for the crystal �eld,
which introduced an excessive anisotropy. This simula-
tion should be carried out later with the new param-
eters. For HC = 24.75 T, the exponent βH was com-
puted the same way as for LiErF4. The linear �t gives
βYb
H = 0.33± 0.01.
c. Thermal phase transition To study the thermal

phase transition, temperature scans were simulated with
the Monte Carlo code for both LiErF4 and LiYbF4. The
energy per ion E , the magnetizations Jx, Jy, Jz, the order
parameter Jalt

xy , the speci�c heat (from the �uctuation-
dissipation theorem Cfdt and from the energy variation
Cv) and the susceptibility χ were measured for each tem-
perature using the following de�nitions:

Cfdt(T ) =
〈E2〉 − 〈E〉2
kBT 2

Cv(T ) =
E(T + dT )− E(T )

dT

χµν =
1

Nions T

∑
a,b

〈Jµa Jνb 〉

The theoretical values of the critical exponents for sev-
eral universality classes are given in table II, for later
comparison with the present results.

LiErF4

For LiErF4, the values are averaged over 109 calcula-
tions and on all the following curves, the error bars are
the standard deviation of the values.
Energy per ion: To estimate the critical temperature TN ,
the standard deviation of the energy per ion can be used.
Indeed, at the transition the �uctuations increase, induc-
ing a higher standard deviation of the energy values (see
�gure 10). The maximum of the standard deviation gives
TN = 127 mK. The value is lower than the experimental
value (373 mK) but closer than the mean �eld value of
735 mK. One notices also a di�erence with the previous
version of the code, which gave TN = 500 mK.
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Figure 9: Simulated �eld scans on LiErF4 and LiYbF4, at
0 K. The �eld is applied parallel to the c-axis. The values
are averaged over 93 measurements for LiErF4 and 58 mea-
surements for LiYbF4 and the errors bars are the standard
deviation. Three quantum phase transitions are observed in
LiErF4, at 0.5 T, 20.8 T and 22.5 T. In LiYbF4, a quantum
phase transition is observed around 25 T, with the old param-
eters.

Order parameter: In both LiErF4 and LiYbF4, the or-
der parameter is the staggered magnetization in the xy
plane. This order parameter Jalt

xy is plotted for LiErF4 in
�gure 11. It is more di�cult here to estimate TN . With
TN = 124.8 mK, the exponent βT de�ned by:

Jalt
xy ∝ |T − TN |βT , (14)

has the value βT = 0.15± 0.02 which corresponds to the
experimental value of 0.15 and to the XY/h4 universality
class (see table II).
Speci�c heat: The speci�c heat was computed in 2 dif-
ferent ways, with the �uctuation-dissipation theorem and
as the derivative of the energy with respect to the tem-
perature. The critical exponent α is de�ned by:

C ∝ |T − TN |−α. (15)

Table II: Values for the critical exponents, for mean-�eld, 3D
models13, 2D models1415 and from experiment on LiErF4

16.

Exponent α β γ
Mean-�eld 0 0.5 1

3D Ising -0.11 0.32 1.24
XY 0.01 0.35 1.32

Heisenberg 0.12 0.36 1.39
2D Ising 0 0.125 1.75

XY/h4 0.1-0.25
LiErF4 (at TN ) 0.28 ± 0.04 0.15 ± 0.02 0.82 ± 0.04
LiErF4 (at Hc) 0.31 ± 0.02 1.44 ± 0.2
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Figure 10: Energy per ion and its standard deviation in
LiErF4. The maximum of the standard deviation gives TN =
127 mK.

The exponent α was computed from both Cfdt for T <
TN and T > TN . The following values are obtained for
α:

αfdt =
T<TN

0.33± 0.16

αfdt =
T>TN

0.39± 0.08

α =
T<TN

0.27± 0.21

α =
T>TN

0.41± 0.39

This can be compared to the experimental value
α = 0.28 ± 0.04. The data are noisier for T > TN be-
cause the phase is disordered, which could explain why
the values measured in the ordered phase are closer to
the experimental values.
Susceptibility: The magnetic susceptibility was also mea-
sured during the simulated temperature scans. The crit-
ical exponent γ is de�ned by:

χ ∝ |T − TN |−γ . (16)

It was computed with a linear �t and with
TN = 126.4 mK, the value for γ (when T < TN )
is γ = 0.91± 0.2.
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Figure 11: Order parameter in LiErF4. The �uctuations
around the transition make di�cult to estimate precisely the
critical temperature.

Table III: Values of the critical exponents for LiErF4when
the value of TN (in mK) used for the �t varies. The values in
blue correspond to the value of TN given by the considered
quantity.

TN αfdt α βT γ
T < TN T > TN T < TN T > TN T < TN T < TN

122.4 0.33 0.39 0.30 0.60 0.12 0.79
123.2 0.37 0.38 0.20 0.56 0.13 0.81
124 0.35 0.39 0.27 0.41 0.14 0.82
124.8 0.32 0.39 0.37 0.50 0.15 0.85
125.6 0.31 0.37 0.24 0.41 0.18 0.88
126.4 0.32 0.38 0.30 0.34 0.20 0.91

127.2 0.29 0.34 0.32 0.14 0.23 0.94

Exponents: The values of all the mentioned exponents
depend on the value of TN used for the �t. The
exponents for di�erent TN are given in table III.

LiYbF4

For LiYbF4, the values are averaged over 81 calculations.
Again, the crystal �eld parameters are the �rst ones,
which do not give a satisfying result for the quantum
phase transition. This simulation should be performed
again with the new parameters.
Energy per ion: The energy per ion and its standard
deviation as a function of the temperature are plotted
in �gure 12. The maximum of the standard deviation
gives TN = 34 mK. The value is again lower than the
experimental value (128 mK) and this time the mean
�eld value is closer with 168 mK.
Order parameter: The order parameter Jalt

xy in LiYbF4 is
plotted in �gure 13. Again, TN is not easy to estimate.
With TN = 34.4 mK, the �t gives βT = 0.18 ± 0.01,
which is again in the range of exponents for the XY/h4
class.
Speci�c heat: As in LiErF4, the speci�c heat was
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Figure 12: Energy per ion and its standard deviation in
LiYbF4. The maximum of the standard deviation gives
TN = 34 mK.
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Figure 13: Order parameter in LiYbF4. The critical tem-
perature is di�cult to �nd, but between 33 mK and 37 mK.

computed with the �uctuation-dissipation theorem and
as the derivative of the energy with respect to the
temperature. The exponent α was also computed in
both case for T < TN and T > TN . The following values
are obtained for α:

αfdt =
T<TN

0.25± 0.07

αfdt =
T>TN

0.59± 0.14

α =
T<TN

0.28± 0.08

α =
T>TN

0.53± 0.18

As for LiErF4, the data are noisier in the disordered
phase, which can explain the di�erence between both
phases.
Susceptibility: The magnetic susceptibility in LiYbF4as
a function of the temperature was also measured. γ was
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Table IV: Dependence on TN (in mK) of the exponents in
LiYbF4, the blue values correspond to the value of TN given
by the considered quantity.

TN αfdt α βT γ
T < TN T > TN T < TN T > TN T < TN T < TN

33.6 0.20 0.68 0.28 0.75 0.16 0.89
34.4 0.24 0.66 0.33 0.73 0.18 0.90

35.2 0.25 0.59 0.32 0.67 0.23 0.98
36 0.29 0.56 0.34 0.53 0.26 1.01

Table V: Comparison of the critical exponents for LiErF4

and LiYbF4 in the ordered phase. The values are close and
correspond to the experimental values in LiErF4. The values
for βT correspond to the

αfdt α βT γ
LiErF4(MC) 0.33 0.27 0.15 0.91
LiErF4(exp) 0.28 0.15
LiYbF4(MC) 0.25 0.28 0.18 0.90

computed using a linear �t and with TN = 34.4 mK, the
value when T < TN is γ = 0.90± 0.2.
Exponents: As in LiErF4, the values of the exponents
depend on the value of TN . This dependence is shown in
table IV.

Comparison

The critical exponents in LiErF4 and LiYbF4 are com-
pared in table V. When the exponents are computed in
the ordered phase, all the values are close and correspond
to the experimental values for LiErF4. Hence LiYbF4

and LiErF4 show similar critical behaviors, which agree
with the 2D XY universality class.

IV. SQUID MEASUREMENTS

A. Estimation of the composition of samples of

LiHo1−xErxF4

The Monte Carlo simulation described in sec-
tion III B could also be used to study LiHo1−xErxF4

or LiHo1−xYbxF4. In these compounds, the disorder
must be taken into account and at low temperature,
a spin glass phase appears. An experimental study of
LiHo1−xErxF4 has already been done17 and a phase di-
agram TC-x is known3. However, the values of x were
known with an accuracy of 5% and hence a method to
measure x more accurately was needed. Here, a method
to �nd x in LiHo1−xErxF4 using measurements of mag-
netic moments in a Superconducting Quantum Interfer-
ometric Device (SQUID) is detailed.

Figure 14: Picture of the 8 samples of LiHo1−xErxF4 pre-
pared, from the LiErF4 on the left to the LiHoF4 on the right.

1. Principle of the SQUID measurement

A SQUID is an instrument used to measure magnetic
moments and whose opering principle is based on a useful
property of superconducting rings which is that the mag-
netic �ux inside them is quantized17. A SQUID is consti-
tuted of a superconducting ring which is interrupted by
one or two Josephson junctions. A Josephson junction
is a thin layer of insulator between two superconductors
and through which the Cooper pairs can pass via quan-
tum tunneling. With two Josephson junctions and when
a bias current is applied across the ring, the magnetic
�ux generates an oscillating voltage, with one oscillation
for each �ux quantum passing through the ring. This
allows accurate measurements of the magnetic moment
of a sample which is passed through the superconducting
ring.

2. Preparation of the samples

In order to measure the magnetic moment of the sam-
ples as accurately as possible, the demagnetization e�ect
must be taken into account (see Appendix C). Since the
only shape allowing a uniform magnetization when a uni-
form magnetic �eld is applied on a sample is the ellipsoid,
it was necessary to prepare spherical powder samples.
They were prepared in plastic capsules, and the powder
was mixed with an epoxy encapsulant called Stycast to
avoid that the particles in the powder align in the mag-
netic �eld. The samples of LiHo1−xErxF4 are shown on
the �gure 14.

3. Estimation of the reproducibility

Five samples of C15H21Fe O6 with Stycast were pre-
pared to check the reproducibility of the preparation and
two �eld scans preceded by a degaussing procedure were
performed on each sample. The degaussing procedure is
used to remove a potential remnant �eld in the magnet.
One observes that the addition of Stycast allows to get



11

0 50 100 150 200 250 300

1.8

1.85

1.9

1.95

2

2.05

2.1

· 10−5

100 500 103 5000 104 5000 103 500 100 (Oe)

Measurement number (s)

V
ol
um

e
Su
sc
ep
ti
bi
lit
y
(S
I)

First sample
Second sample
Third sample
Fourth sample
Fifth sample

Figure 15: Field scans of 5 di�erent sample of C15H21Fe O6

with Stycast, at T = 30 K. During each scan, the �eld is
swept from 102 Oe to 104 Oe and then decreased again to 102

Oe.

exactly the same values for each scan on a given sam-
ple, excepted for the low �eld of 102 Oe where the signal
is noisier. Furthermore, the signal has exactly the same
shape for all the samples and the di�erences between the
values may be due to the variations in the mass of pow-
der (see �gure 15). 5 samples were prepared, with 2 �eld
scans for each, with 9 values for the �eld (the decreasing
and increasing �eld are separated, they do not give the
same values of susceptibility) and 30 points for each �eld
in each scan. With these data, several reproducibility
criteria can be de�ned:

• the reproducibility of the measurement on a given
sample, at a given �eld, during a given scan.

• the reproducibility of a full �eld scan on a sample.

• the reproducibility of the sample preparation, ie of
the mass of powder which constitutes the sample.

• the variation of the susceptibility value with the
�eld.

a. Reproducibility of the measurement with all the
conditions �xed. For each sample, during each �eld
scan, the moment of the sample was measured 30 times
for each �eld value. The standard deviation for these 30
values was computed in each case, and averaged over the
10 scans. The variation is very low, below 0.1%: in given
conditions the measurement is very reproducible.
b. Reproducibility of a full �eld scan on a sample.

Two similar �eld scans were performed on each sample,
with a degaussing procedure before each. The mean dif-
ferences between both scans were calculated and �nally,
with the degaussing procedure, the two �eld scans are
rather similar, the di�erence is 1.5 % in the worst case.

Table VI: Evaluation of the di�erent reproducibility criteria
with the 5 spheres of C15H21Fe O6.

Error on the measurement with
the conditions �xed

between 0.02 and 0.09 %

Variation between 2 scans on the
same sample

between 0.2 and 1.5 %

Error on the mass of the sample around 1%
Variation of the susceptibility
value with the �eld

around 3.5%

c. Reproducibility of the sample preparation. The
main source of error in the preparation of the samples
is the mass of the powder which is used. The standard
deviation between the 10 scans of the values for each �eld
was computed and averaged over the 30 measurements.
The error due to the sample preparation is around 1%.
It could be reduced by weighting the powder with more
accuracy.
d. Variation of the susceptibility with the �eld. The

variation of the value of the susceptibility when the value
of the �eld changes (for instance because of demagnetiza-
tion) can also be evaluated, which leads to evaluate the
standard deviation of the whole measurement for each
scan on each sample. 10 values are obtained and aver-
aged. The �nal value is a variation of 3.4 %. However,
since the temperature scans on the LiHo1−xErxF4 sam-
ples are done at a �xed �eld, it is not necessary to con-
sider this error in the following measurements.
Finally, the estimation of the errors coming from the 4
criteria are gathered in table VI.

4. Measurements on LiHo1−xErxF4.

Eight samples of LiHo1−xErxF4 were then prepared,
with the following compositions: LiHoF4, 2 samples to
compare the results, 80% of Ho, 55% of Ho, 50% of Ho,
30% of Ho, 25% of Ho, LiErF4. A temperature scan from
10 K to 300 K was performed on each sample with a �eld
of 104 Oe, to avoid the noise at low �eld. One observes
that the two samples of LiHoF4 give almost exactly the
same result.
The e�ect of demagnetization on the sample must be
taken into account (see Appendix C). Assuming that the
samples are spherical, the volume magnetization can be
written:

M = χ (H0 −
M

3
) (17)

where H0 is the external magnetic �eld and χ the volume
susceptibility. The susceptibility follows the Curie law at
high temperatures:

χ =
C

T
(18)

In this temperature range, the interactions are not con-
sidered and then C should be linear in the fraction of Ho,
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and linear �t.

Table VII: Comparison between the computed values of the
fractions of Ho and the expected ones.

Expected fraction of Ho Computed fraction of Ho
1 0.95

0.80 0.81
0.55 0.57
0.50 0.59
0.30 0.29
0.25 0.19
0 -0.01

x. Hence:

M

H0
=

3C

C + 3T
. (19)

The relationship between H0/M and T should be linear
with a slope of 1/C, which leads to the fact that the in-
verse of the slopes should be linear in x, at least at high
temperatures. The values of the inverse of the slopes as
a function of x are plotted on the �gure 16, with an er-
ror bar of 1% corresponding to the reproducibility of the
preparation of the spheres. Using this linear �t, it is pos-
sible to compute the fraction of Ho in each sample and to
compare it with the expected value (see table VII). The
data show a rather good agreement but the di�erence is
still high for some samples. This technique to measure
x could be improved by measuring more accurately the
mass of the samples. Furthermore, since Ho and Er both
have a large magnetic moment with similar values � the
variation in the slope is rather small and it is di�cult
to distinguish the samples. Therefore, using this method
on LiHo1−xYbxF4 should be easier because the magnetic
moment of Yb is really smaller than the one of Ho, lead-
ing to a larger variation of the slopes and then to an
improved accuracy.

Figure 17: Observed di�raction pattern along the a-axis in
LiYbF4. The red dots are the expected theoretical pattern,
some points are missing because of a defect with the software
used.

B. Measurements of a cube of LiYbF4

1. Preparation of the sample

A measurement of the magnetic moment of a single
crystal of LiYbF4 was performed in a SQUID. A cubic
sample was used to take into account more easily the de-
magnetization factor. Because of the anisotropy of the
material, it was necessary to align the sample before cut-
ting it, in order to measure the components χa and χc of
the susceptibility tensor. This alignment was performed
using Laue di�raction. The theoretical di�raction pat-
tern and the observed one are shown in �gure 17.

2. Temperature scans

a. Anisotropy and powder averaging The cube was
measured twice in the SQUID, two temperature scans
were performed between 2.5 K and 300 K, one with the
external �eld parallel to the a-axis and the other with the
�eld parallel to the c-axis. The applied DC �eld was 500
Oe in both cases. The powder sample was measured in
the 100 K to 300 K temperature range. The anisotropy
between the a-axis and the c-axis can be found from the
values of the susceptibility which is much larger along
the a-axis than along the c-axis (�gure 18). For a pow-
der sample, the susceptibility corresponds to an average
between the susceptibility along each axis:

χpowder =
2

3
χa +

1

3
χc (20)

Figure 18 shows a very good agreement between the av-
erage value of the data measured on the single crystal
and on the powder sample.
b. Fit with a Curie-Weiss law and comparison with

mean �eld calculation The dependence of the molar sus-
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Figure 18: Temperature scans with an external �eld of 500
Oe on the single crystal and the powder sample, compared
with the average of χa and χc.

ceptibility with the temperature can be expressed (in a
mean �eld approximation) with a Curie-Weiss law:

χ =
g2
Lµ

2
BJ(J + 1)

3kB(T − θ) NA (21)

where NA is the Avogadro number. This leads to the def-
inition of an e�ective moment µeff = gL

√
J(J + 1)µB .

The susceptibilities along the a-axis and the c-axis were
computed in two di�erent ways: with the mean �eld ap-
proximation and with the �uctuation dissipation theo-
rem, using the formula 22 for the susceptibility.

χµνFDT =
µ2
Bg

2
L

kBT
(〈JµJν〉 − 〈Jµ〉〈Jν〉) (22)

where

〈A〉 =

∑
λ

e−βEλ 〈λ|A |λ〉∑
λ

e−βEλ

(with {λ} the set of eigenvalues of Hcf + HZ and
β = 1/kBT ). A Curie-Weiss law was �tted to both the
experimental and numerical data, to obtain the values
of µeff . This was also done with data on powder sam-
ples of LiErF4 and LiHoF4. The results are presented in
table VIII and a comparison between the mean �eld com-
putation, the results of the �uctuation-dissipation theo-
rem and the experimental data is shown in �gure 19 for
LiYbF4. The values of µeff obtained with the di�er-
ent methods are in good agreement and the di�erences
comes from the fact that the mean �eld approximation
takes the dipolar interaction into account whereas the
�uctuation-dissipation does not. Furthermore, the the-
oretical values of µeff do not consider the crystal �eld
levels, which explains that they do not really correspond
to the experimental value.
In LiYbF4, a change in slope in 1/χ is found at around

Table VIII: E�ective moments from the Curie-Weiss law for
the experimental data, the mean �eld calculation and the
�uctuation-dissipation theorem. The e�ective moments are
given in µB .

µeff exp. µeff MF µeff FDT µeff th.10

LiYbF4 aa 4.85 4.58 4.76
cc 5.20 5.68 4.06

average 4.75 4.68 4.53 4.5
powder 4.74 4.5

LiHoF4 powder 10.45 10.66 10.60 10.6
LiErF4 powder 9.53 9.71 9.58 9.6
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Figure 19: Curves of the inverse susceptibility for LiYbF4,
comparison with the mean �eld approximation and the
�uctuation-dissipation theorem and Curie-Weiss �ts of the
data at high temperature.

50 K. This change does not occur either in LiErF4 or
in LiYbF4. A plausible explanation could be that at
this temperature, a new energy level of the crystal �eld
becomes populated, however, further experimental mea-
surements are required to understand this. Furthermore,
this change does not appear in the �uctuation-dissipation
theorem calculation but does in the mean �eld one, which
suggests that it could be linked to the interactions or to
some collective phenomena.

V. THE H-T PHASE DIAGRAM OF LiYbF4

A. Experimental setup

1. AC susceptibility measurements

To study the low temperature behavior of LiYbF4, AC
susceptibility measurements were performed on a single
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Figure 20: Schema of the inductive susceptometer.

crystal in a dilution refrigerator. The AC susceptibility
χAC is de�ned by:

χAC =
dM

dH
(23)

where M is the magnetization of the sample and H an
external low AC magnetic �eld. More precisely18, if an
alternating magnetic �eld Ha = Ha0 cos(ωt) is applied to
the sample, the real part χ′ and the imaginary part χ′′

of the AC susceptibility are de�ned by:

χ′ =
ω

µ0Ha0π

2π
ω∫

0

〈B〉 cos(ωt)dt − 1

χ′′ =
ω

µ0Ha0π

2π
ω∫

0

〈B〉 sin(ωt)dt

where 〈B〉 is the local average �ux density in the sam-
ple. The technique used here for the measurements is the
inductive technique. The sample is located inside three
concentric coils (see �gure 20): a primary coil and two
compensated secondary coil. The primary coil produces
the AC �eld and the two secondary coils (pickup coils)
are used to measure the response of the sample. These
coils are wrapped with opposite polarity, in order to re-
duce the voltage induced by the AC �eld. The signal is
measured with a lock-in ampli�er in order to observe only
the component which is at the frequency of the AC �eld
(here 546.5 Hz).The measured signal is then proportional
to the susceptibility and to the frequency of the AC �eld:

vrms ∝ fHa0χ

where f and Ha0 are the frequency and the amplitude
of the applied AC magnetic �eld. The real part χ′ of
the susceptibility is the slope of the M(H) curve and the
imaginary part χ′′ is related to dissipation processes.

2. The dilution refrigerator

The critical temperature in LiYbF4 is predicted to be
185 mK by the mean �eld calculation. In order to mea-

coils

1 cm

sample

thermalization wires

carbon �ber

Figure 21: Picture of the susceptometer used in the dilution
refrigerator to map out the phase diagram of LiYbF4.

sure it experimentally, the sample is cooled down to a
very low temperature. Using liquid 4He, it is possible
to reach 4.2 K and when the vapour pressure is reduced,
temperatures around 1 K are reachable. For lower tem-
peratures, one can use a dilution refrigerator. In a di-
lution refrigerator, a mixture of liquid 3He and 4He is
used. Below a critical temperature, a phase separation
occurs. The lighter phase is rich in 3He and thus called
the concentrated phase, and the heavier phase (the dilute
phase) is rich in 4He. The enthalpy of 3He in the two
phases is di�erent and therefore evaporating 3He from
the concentrated to the dilute phase provides cooling.
This process works even at very low temperature because
the concentration of 3He in the dilute phase is non zero
at 0 K. Figure 22 shows a photo of the dilution refrig-
erator. The mixture is condensed in the 1 K pot. It
�ows to the mixing chamber, where the phase boundary
is located, through the heat exchanger. The 3He is then
evaporated in the dilute phase, passes again through the
heat exchanger and is pumped from the still before being
returned to the 1 K pot. During the operation, the re-
frigerator is placed inside a cryostat which is cooled down
to 4.2 K using liquid 4He.
At the low temperatures which are reached by the dilu-
tion refrigerator, the measurement of the temperature is
performed using a ruthenium oxide resistor which is cali-
brated according to the method described in Appendix D.
This type of resistors are not a�ected signi�cantly by
small magnetic �elds and can be used down to around
15 mK. Below this temperature, the resistance becomes
almost constant, which leads to rather inaccurate mea-
surements.

3. Preparation of the sample

The measurements were performed on a single crystal
of LiYbF4, of approximately 1×1×10 mm. The crystal
was aligned using Laue di�raction (see �gure 17). Both
the external DC �eld (applied with a 18 T superconduct-
ing magnet) and the AC �eld were parallel to the c-axis
of the crystalline structure, allowing the measure of χcc.
Four thin copper wires were �xed on the sample to ensure
a good thermalization. A stick of carbon �ber was also
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mixing chamber

heat exchanger

still

1 K pot

Figure 22: Picture of the dilution refrigerator. The suscep-
tometer is �xed at the bottom of the mixing chamber during
the measurement.

attached on the sample to facilitate its manipulation.

B. Results

1. Critical temperature

In order to map out the H-T phase diagram of LiYbF4,
temperature and �eld scans were performed on the sam-
ple. To determine the critical temperature, the complex
susceptibility was measured without any external DC
�eld between the base temperature of the refrigerator and
250 mK. The real part χ′ shows a peak (see �gure 23) at
the phase transition with Tc = 128.6 mK. This value can
be compared to the result of the mean �eld computation,
which gives TMF

c = 186 mK when the hyper�ne coupling
is not considered and TMF

c = 182 mK when it is taken
into account. As expected, the mean �eld overestimates
the critical temperature because it neglects the �uctua-
tions. Conversely, the Monte Carlo simulation underesti-
mates the critical temperature, TMC

c = 34.4± 3 mK but
this value was computed with the wrong parameters.

2. Critical �eld

The critical �eld HC was found from performing a �eld
scan at the base temperature of the refrigerator, 14.3 mK.
The curves of χ′ and χ′′ are plotted in �gure 24. The
response of the sample looks di�erent when the �eld is
increased or decreased. This e�ect could be due to a too
high ramp rate during the scans, which introduces eddy

0 50 100 150 200 250

6

7

· 10−6

128.6

Temperature (mK)

χ
′
(a
.u
.)

Figure 23: Real part χ′ of the AC susceptibility as a func-
tion of the temperature in LiYbF4, without external magnetic
�eld. The measured critical temperature is Tc = 128.6 mK
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Figure 24: Field scan at 14.3 mK. The scan was per-
formed twice, once with the �eld going up and the
other one with the �eld going down . The ramp rate
is 0.04 T/min, excepted between 0.4 and 0.55 T where it is
reduced to 4 mT/min

currents heating the sample space. Several scans with
di�erent ramp rates were carried out to check this hy-
pothesis (see Appendix E) and indeed, when the ramp
rate is decreased, the two curves become closer but even
at the slowest possible ramp rate, they do not overlap
perfectly. Another explanation is that the thermaliza-
tion of the sample is really di�cult to achieve because at
low temperature, the thermal conductivity becomes very
small. Thus the temperature might be di�erent between
the two scans and inhomogeneous in the sample, leading
to this hysteretic behaviour.

3. Phase diagram

Several �eld scans at di�erent temperatures were
then carried out on the sample with a ramp rate of
0.8 mT/min. In each case, the position of the peak in
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Figure 25: χ′ when the external DC �eld varies, for di�erent
temperatures between 14.3 mK and 120 mK. The critical �eld
decreases when the temperature increases and the amplitude
of the peak decreases at very low temperature.

the susceptibility indicates the transition: each scans
gives one point for the phase diagram. All these �eld
scans are plotted in �gure 25. As expected, the critical
�eld decreases when the temperature increases. Further-
more, the amplitude of the peak does not vary mono-
tonically with the temperature. At high temperature,
the amplitude is low (and the peak disappears when
T > TN = 128 mK), when the temperature decreases,
the amplitude of the peak increases until a maximum
around 50 mK. Then, at lower temperatures, the ampli-
tude of the peak decreases. In fact, the peak becomes
also less sharp below 30 mK. This low temperature ef-
fect was also observed in LiErF4 and could be due to the
hyper�ne coupling.
At low �elds, some temperature scans were also per-

formed to study the behaviour of the sample around TN .
Finally, the phase diagram of the �gure 26 was obtained
from analysing (at low temperatures) the χ′′ part of the
susceptibility which showed the onset of the phase transi-
tion more clearly than χ′. These data can be compared to
the results given by the mean �eld calculation. The calcu-
lation in the mean �eld approximation was done with and
without the hyper�ne coupling and the values for TN and
HC are given in table IX. With the hyper�ne coupling, at
very low temperature, the critical �eld is increased. This
e�ect was seen in LiErF4 but here with LiYbF4, it seems
that below 20 mK, the sample was not well thermalized.
The temperature may have stayed around 20 mK and
since the change of slope in the phase diagram occurs
below 20 mK, the e�ect would not have been visible.
Two critical exponents can be de�ned on the phase dia-
gram, to describe the behaviour of TN (H) whenH → HC

and the behaviour of HC(T ) when T → TN . They were

20 40 60 80 100 120
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F
ie
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Mean �eld without hyper-
�ne coupling (T rescaled)
Mean �eld with hyper-
�ne coupling (T rescaled)

Figure 26: H-T phase diagram of LiYbF4.

Table IX: Values for TN and HC given by the mean �eld
approximation.

Experiment TN = 128.6 mK
HC = 0.48 T

MF without hyper�ne coupling TN = 186 mK
HC = 0.46 T

MF with hyper�ne coupling TN = 182 mK
HC = 1.2 T

computed for both the experimental data and the nu-
merical ones coming from mean �eld (with and without
hyper�ne coupling). For TN (H), the experiment gives an
exponent of 0.32 ± 0.02 while the mean �eld gives 0.24 ±
0.01. The experimental value of this exponent in LiErF4

1

is 0.34 ± 0.01, which is close to the value measured in
LiYbF4. Again, the two compounds seem to have the
same behaviour. For HC(T ), the experimental value of
the exponent is 0.54 ± 0.05, whereas the mean �eld gives
0.52 ± 0.03 without the hyper�ne interaction and 0.50 ±
0.04 with them. In this case, the mean �eld approxima-
tion gives a rather good description of the behaviour of
LiYbF4.

VI. DISCUSSION

When the �rst set of crystal �eld is used, a large dis-
crepancy between the results of the numerical simula-
tions on LiYbF4 and the experimental data is observed.
The critical temperature in LiYbF4 is very underesti-
mated by the Monte Carlo computation and both the
mean �eld calculation and the Monte Carlo give a criti-
cal �eld which is 50 times the one which was measured.
Furthermore, the change in slope around 50 K in the sus-
ceptibility curve 19 cannot be explained from the values
of the transitions between energy levels in the crystal
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�eld. All these observations suggest that these crystal
�eld parameters for LiYbF4 might be wrong.
However, transitions between the levels in the used Hcf

correspond to those measured with neutron scattering.
There might be another transition at a lower energy
which was not seen but from the data that can be found
in the literature19, it seems rather implausible. In addi-
tion, the change of slope in the susceptibility was present
in the mean �eld data, which were computed with these
crystal �eld parameters.
A new �t of the neutron scattering data, using also the
measurement of susceptibility of the single crystal per-
formed in the SQUID, was done in order to �nd a new set
of parameters. The mean �eld calculations using these
new parameters (table X) give a critical �eld which corre-
sponds to the experiment. The Monte Carlo simulation
should be carried out again with these parameters but
should give a more reasonable value for HC since the
anisotropy in the xy plane is less pronounced.
Nevertheless, even with the wrong parameters, the ob-
tained values of the critical exponents are in agreement.
The Monte Carlo simulation gives for α, β and γ similar
values for LiYbF4 and LiErF4, and these values also cor-
respond to those obtained from experiments for LiErF4.
Furthermore, the exponent measured on the phase dia-
grams for TN (H) are really close: 0.32 for LiYbF4 and
0.34 for LiErF4. Both compounds seem to have similar
low temperature behaviours.
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Appendix A: Stevens operators and crystal �eld

parameters

The charge distribution around each rare earth ion cre-
ates an electric �eld (the crystal �eld) acting on the 4f
electrons and creating the magnetic anisotropy. The con-
tribution of the crystal �eld to the potential energy is
written:

Vcf(~r) =

∫
eρ(~R)

|~r − ~R|
d~R

where ρ(~R) is the charge density. After a development in
spherical harmonics and some manipulation10, the crys-

Table X: Crystal �eld parameters, in meV. For LiYbF4, the
�rst set of parameters was used in the Monte Carlo simulation
but was not satisfying. The second one (which is inside the
intervals given by the error bars of the �rst) was obtained from
�tting the neutron scattering data and the susceptibility data
and were used for the other calculations.

LiYbF4
20 LiYbF4 (new) LiErF4

1 LiHoF4
6

103B0
2 663 ± 80 646.2 60.23 -60.0

103B0
4 12.5 ± 4.5 15.3 -0.12 0.350

103B4
4(c) 102 ± 41 116.5 -4.33 3.60

105B0
6 -62 ± 73 -68.6 -0.19 4.0

103B4
6(c) -16.0 ± 1.7 -15.2 -0.085 0.070

106B4
6(s) 0 0 -22.7 9.8

tal �eld can be written in terms of the Stevens operators:

Hcf =
∑
i

∑
lm

Bml Ô
m
l (~Ji)

In the case of LiREF4, the symmetries of the crystalline
structure lead to a reduction of the number of param-
eters. The expression of the relevant operators are the
following: (where X ≡ J(J + 1) and Ĵ± ≡ Ĵx ± iĴy)

Ô0
2 = 3Ĵ2

z −X
Ô0

4 = 35Ĵ4
z − (30X − 25)Ĵ2

z + (3X2 − 6X)

Ô4
4 =

1

2
(Ĵ4

+ + Ĵ4
−)

Ô0
6 = 231Ĵ6

z − (315X − 735)Ĵ4
z

+ (105X5 − 525X + 294)Ĵ2
z

+ (−5X3 + 40X2 − 60X)

Ô4
6(c) =

1

4
[(11Ĵ2

z −X − 38)(Ĵ4
+ + Ĵ4

−)

+ (Ĵ4
+ + Ĵ4

−)(11Ĵ2
z −X − 38)]

Ô4
6(s) =

1

4i
[(11Ĵ2

z −X − 38)(Ĵ4
+ − Ĵ4

−)

+ (Ĵ4
+ − Ĵ4

−)(11Ĵ2
z −X − 38)]

Appendix B: Equilibrium con�guration for the

Monte Carlo simulation

In both LiYbF4 and LiErF4, there are two types of
phase transitions : the classical thermal phase transition
and a quantum phase transition, at 0 K, which occurs
when an external magnetic �eld is applied perpendicu-
larly to the xy plane. Using the Monte-Carlo code, �eld
scans and temperature scans can be performed but be-
fore studying the transitions, an estimation of the num-
ber of Monte Carlo steps needed to reach equilibrium is
required. The scans are carried out in the following way:
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Figure 27: Energy relaxation for LiErF4 and LiYbF4

, for a system of size L = 7 and a temperature step of
50 mK.

the system is set in the equilibrium con�guration for the
considered temperature and �eld using Neq Monte Carlo
steps. The directions of the moments after this procedure
are saved and used to measure the parameters of interest
during Nmeas iterations. Several independent measure-
ment can be executed in the same equilibrium con�g-
uration. In order to estimate the value of Neq, which
depends on the size of the system (here L is kept at 7
in all the following, thus this e�ect was not taken into
account), on the size of the temperature or �eld step and
of the nature of the ion, Er or Yb. Figure 27 shows the
initial con�guration of the system which is the BLAFM
structure at 0 K and the temperature is set to 50 mK,
which represents a higher step than what is used dur-
ing the scans, whose temperature steps are smaller than
20 mK. For LiErF4, the relaxation after the tempera-
ture change takes approximately 106 steps, whereas for
LiYbF4 only 2 · 105 steps are required, for the same tem-
perature variation of 50 mK. For a �eld variation of 1 T,
the energy relaxation lasts 1.5 · 106 steps in LiErF4 but is
really longer in LiYbF4, around 6 · 106 steps are needed.
However, 2 · 106 steps seem su�cient to approach the
equilibrium. Some measurements were performed with
Neq = 107 and Nmeas = 3 · 106 in order to check that the
relaxation was long enough. They gave the same results
as those with the smaller Neq and Nmeas. Finally, the
values Neq = 2 · 106 and Nmeas = 106 are used in the
following, for both LiErF4 and LiYbF4.

Appendix C: Demagnetization factor

In order to express the magnetization of a sample, two
magnetic �elds should be taken into account: the applied

external �eld ~H0 and the demagnetizing �eld ~Hd. This
�eld is induced by the magnetization of the sample itself
and is opposed to the external �eld. Thus, the relation

between the magnetization and the �eld is:

~M = χ( ~H0 + ~Hd)

The value of ~Hd depends on the geometry of the sample
and most of the time, it is not uniform. In a uniform

external �eld ~H0, the only shape of the sample leading
to a uniform magnetization is the ellipsoid21. In this
case, the demagnetizing �eld is linearly related to the
magnetization:

~Hd = −N ~M

where N is the demagnetization factor, which is a di-
agonal tensor in the basis of the principal axes of the
ellipsoid. This tensor has two general properties: it is
symmetric and its trace is 1. Hence, for a sphere, be-
cause of the spherical symmetry, Nxx = Nyy = Nzz = 1

3 .
For non-ellipsoidal bodies, the demagnetization factor
in not uniform inside the sample. In order to evaluate
the average response of the sample, an averaging pro-
cedure is needed. There are two main methods used
to obtain an averaged demagnetization factor. In the
�rst one, the factor is averaged over the whole body
and is called the demagnetization factor. For the sec-
ond method, the average is only taken on a section of the
sample which is perpendicular to the applied �eld and
the factor is called the ballistic demagnetization factor.
For a cube, along the principal axes, the magnetometric
demagnetization factor is then the same as for the sphere,
Nxx = Nyy = Nzz = 1

3 .

Appendix D: Calibration of the thermometers

In order to measure accurately the temperature of
the sample in the dilution refrigerator, a thermometer
made of a thick �lm of ruthenium oxide is used. This
thermometer allows to measure temperatures down to
15 mK. The calibration of the thermometer is performed
using a superconducting reference device (SRD) and a
paramagnetic salt called CMN (cerium magnesium ni-
trate). The SRD contains 13 superconducting samples
with known and sharp transitions at temperatures be-
tween 14 mK and 7 K. The paramagnetic susceptibility
of the CMN is measured simultaneously and then �tted
to a Curie-Weiss law:

χ =
C

T − θCW

using the 13 known temperatures from the SRD. Using
this �t, the thermometer can be calibrated over the entire
temperature range. In addition, before the thermometer
can be used to measure accurately the temperature, it
must be thermally cycled. This procedure consists of
cooling the thermometer down to 77 K one hundred times
using liquid nitrogen. This cycling is required to reduce
the variability of the resistance.



19

0.4 0.45 0.5 0.55

4

6

8

· 10−6

Field (T)

χ
′
(a
.u
.)

8 mT/min 2 mT/min 0.4 mT/min

4 mT/min 0.8 mT/min 0.2 mT/min

Figure 28: Field scans between 0.4 and 0.55 T at 14.3 mK for
di�erent ramp rates. The peak in χ′ becomes sharper when
the rate decreases.
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Figure 29: Field scans at 14.3 mK for the maximum and the
minimum ramp rates used. The hysteretic behavior is still
visible at the lowest rate, but the di�erence becomes smaller.

Appendix E: E�ect of the ramp rate on the �eld

scans in LiYbF4

At very low temperature, the shape of the peak in χ′

for a �eld scan changes and is amplitude decreases. It be-

comes less sharp and therefore the transition is di�cult
to �nd accurately. One has to use the peak in χ′′ instead.
An explanation for the shape of the peak in χ′ could be
that the �eld was increased too fast. Several scans at
di�erent rates were performed to look at this e�ect (�g-
ure 28). Indeed, the shape of the curve changes when
the rate changes, probably because the time of thermal-
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Figure 30: Comparison between the slowest �eld scans and
the points taken with the relaxation of one hour, at 14.3 mK.
The value here is the mean value of χ′ over the last 30 min
and the error bar gives the variation during this period of
time.

ization is longer at low temperature since the thermal
conductivity is very small. However, even at the slowest
possible ramp rate, there is still a di�erence between the
scans with the �eld going up and down (see �gure 29).

Since the lowest possible ramp rate of the magnet
(0.2 mT/min) was reached, another method was used.
The �eld was set to a given value and then the relax-
ation was measured during one hour. 15 values of the
magnetic �eld were taken, with the �eld going up and
the �eld going down. The result of this measurement is
plotted in �gure 30. The obtained points are as expected
between the two curves from the slowest �eld scans. This
time, the curves for the increasing and decreasing �eld are
really close.
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