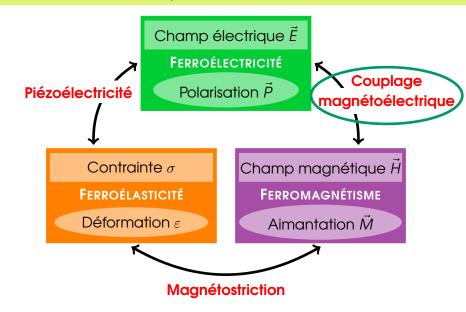

ÉTUDE OPTIQUE DE MATÉRIAUX MULTIFERROÏQUES

Aurore Finco


Équipe SQUAP, Laboratoire Matériaux et Phénomènes Quantiques, Université Paris VII

16 mai 2014

La coexistence de plusieurs ordres

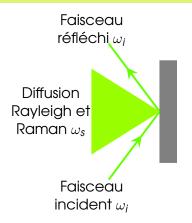
La coexistence de plusieurs ordres

Deux familles de multiferroïques : types I et II

Type I

- Ferroélectricité et magnétisme dus à des phénomènes différents
- ▶ Bons ferroélectriques (P $\sim 100 \,\mu\text{C/cm}^2$)
- Hautes températures de transition
- Couplage magnétoélectrique faible

Deux familles de multiferroïques : types I et II


Type I

- Ferroélectricité et magnétisme dus à des phénomènes différents
- ▶ Bons ferroélectriques (P $\sim 100 \, \mu\text{C/cm}^2$)
- Hautes températures de transition
- Couplage magnétoélectrique faible

Type II

- Ferroélectricité induite par le magnétisme
- Polarisation plus faible (P $\sim 10^{-2} \, \mu \text{C/cm}^2$)
- Basses températures de transition
- Fort couplage magnétoélectrique

La diffusion inélastique de la lumière

Diffusion Rayleigh

Diffusion **élastique** due aux fluctuations **spatiales**

Diffusion Raman

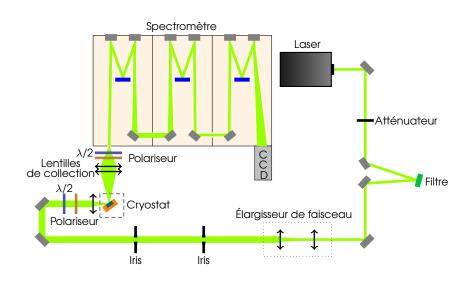
Diffusion **inélastique** due aux fluctuations **temporelles**

- Permet de sonder les propriétés dynamiques
- Observation de plusieurs types d'excitations : phonons, magnons, etc.

La diffusion Raman

Règles de sélection

Intensité diffusée


$$I_s \propto |\hat{e_s} \cdot \mathcal{R} \cdot \hat{e_i}|^2$$

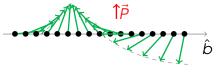
- ▶ Tenseur Raman $\mathcal{R} \Leftrightarrow \mathsf{Filtre}$
- ▶ Lumière visible : on sonde à q ~ 0

En changeant les polarisations incidentes \hat{e}_i et diffusées \hat{e}_s , on observe des excitations de symétries différentes.

La diffusion Raman

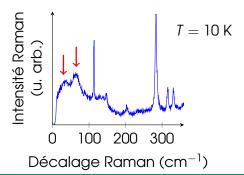

Schéma du montage

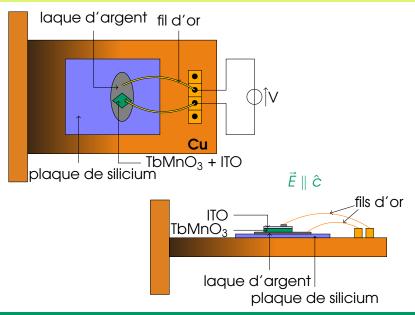
Le spectromètre



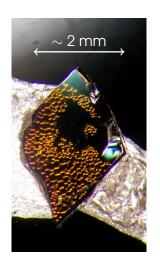
TbMnO₃

Multiferroïque de type II

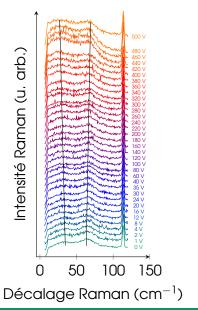

- Transition à T₁ = 28 K: phase cycloïdale ferroélectrique
- Polarisation dans le plan de la cycloïde


Les électromagnons dans TbMnO₃

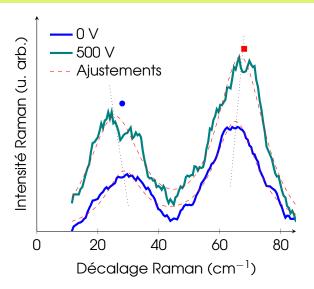
Électromagnon : Onde de spin possédant un moment dipolaire et pouvant être excitée par un champ électrique oscillant

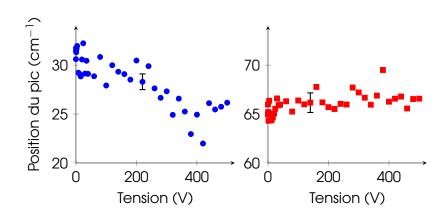

- Excitations de basse énergie : 30 cm⁻¹ et 65 cm⁻¹
- Observées en spectroscopie THz et infrarouge

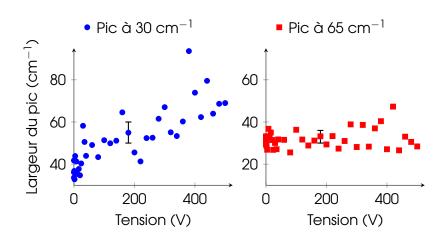
Contact électrique

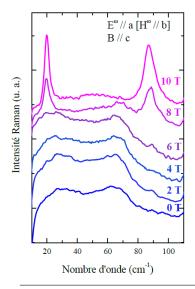


Photographies de l'échantillon

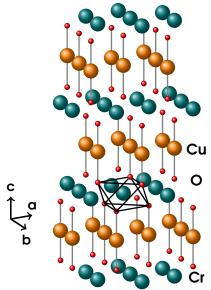



Écartement des deux électromagnons

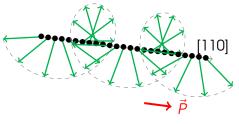

Écartement des deux électromagnons


Évolution des positions

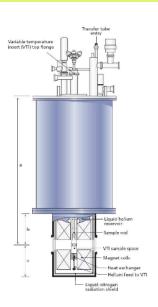
Évolution des largeurs


Conclusion sur TbMnO₃

- Effet proche de celui d'un champ magnétique suivant l'axe ĉ
- Nécessité de refaire la mesure avec l'ITO pour en tirer des conclusions plus précises
- On peut contrôler la fréquence des électromagnons dans TbMnO₃ avec un champ électrique

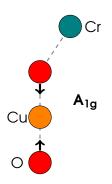

Rovillain et al., PRL, vol 107, p 027202, 2011

CuCrO₂

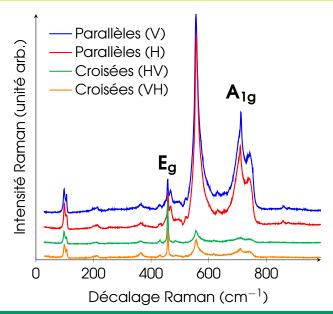

Multiferroïque de type II

- ► Transition à T_N = 25 K : phase hélicoïdale ferroélectrique
- Polarisation suivant l'axe de l'hélice [110]

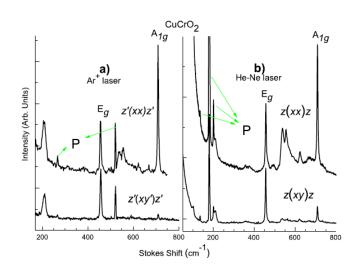
Cryostat et bobine


Modes attendus et règles de sélection

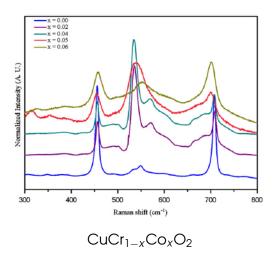
- ▶ 4 atomes par maille → 12 modes normaux de phonons
- $\Gamma = A_{1g} + E_g + 3A_{2u} + 3E_u$
- Modes observables en Raman : A_{1g} et E_g


$$A_{1g} = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}, E_g(1) = \begin{pmatrix} c & 0 & 0 \\ 0 & -c & d \\ 0 & d & 0 \end{pmatrix}$$
$$E_g(2) = \begin{pmatrix} 0 & -c & -d \\ -c & 0 & 0 \\ -d & 0 & 0 \end{pmatrix}$$

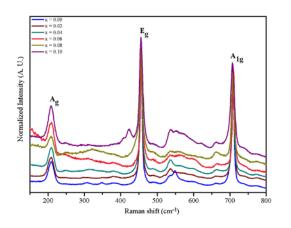
Modes attendus et règles de sélection


- ▶ 4 atomes par maille → 12 modes normaux de phonons
- $\Gamma = A_{1g} + E_g + 3A_{2u} + 3E_u$
- Modes observables en Raman : A_{1g} et E_g

Spectre Raman à 5 K, λ = 532 nm

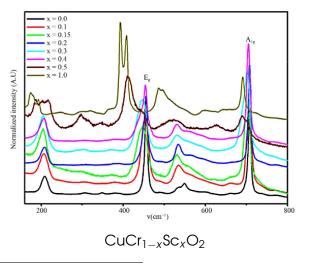


Spectre Raman de CuCrO₂

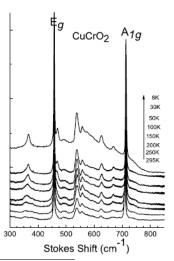

Aktas *et al.*, Journal of Phys. : Condensed Matter, vol 24, no 3, p 036003, 2012

Pics autour de 560 cm⁻¹ : liés au désordre ?

Elkhouni *et al.*, Journal of Magnetism and Magnetic Materials, vol 330, p 101-105, 2013

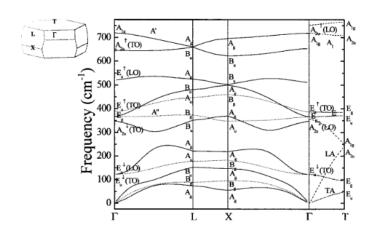

Pics autour de 560 cm⁻¹ : liés au désordre ?

 $CuCr_{1-x}Ti_xO_2$

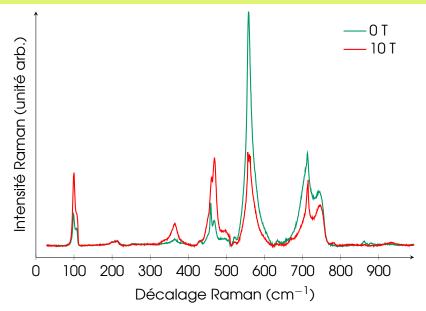

Elkhouni *et al.*, Journal of Superconductivity and Novel Magnetism, vol 26, no 9, p 2795-2802, 2013

Pics autour de 560 cm⁻¹ : liés au désordre ?

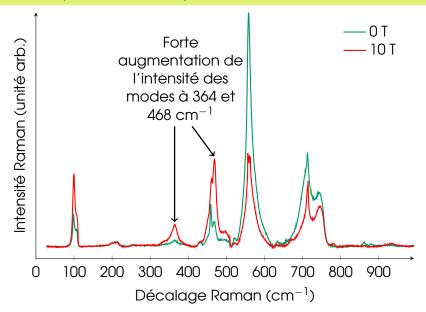
Elkhouni *et al.*, World Journal of Condensed Matter Physics, vol 03, no 1, p 1-8, 2013


Dépendance en température

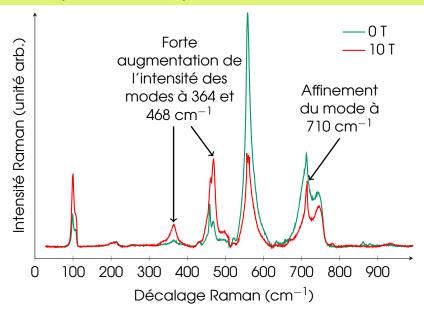
Aktas *et al.*, Journal of Phys. : Condensed Matter, vol 24, no 3, p 036003, 2012

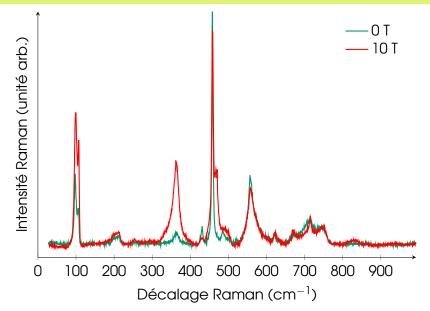

Origine possible des modes supplémentaires

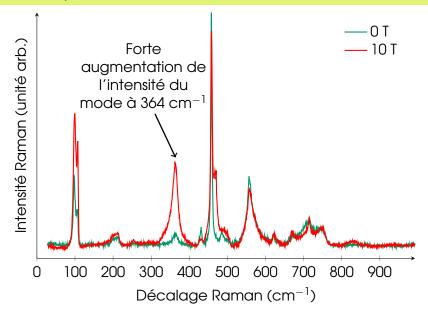
Calculs *ab initio* des relations de dispersion des phonons et dépendance en pression dans CuGaO₂.

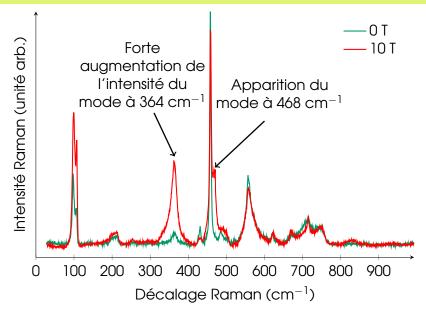


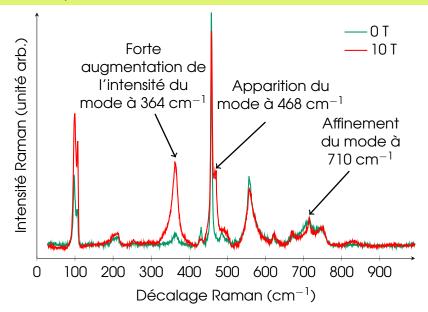
Pellicer-Porres *et al.*, PRB, vol 76, no 6, p 064301, 2005

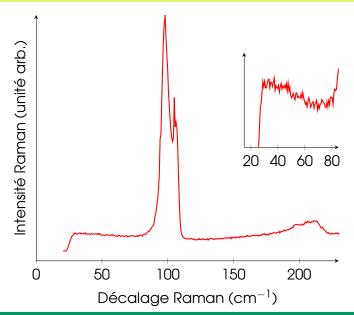

B = 10 T, polarisations parallèles




B = 10 T, polarisations parallèles




B = 10 T, polarisations parallèles



Spectre à basse énergie, polarisations parallèles

Conclusion

TbMnO₃

- Mise en évidence du contrôle de la fréquence des électromagnons par un champ électrique
- Résultat qualitatif
- Nouvelle mesure à réaliser avec une électrode d'ITO

Conclusion 27

Conclusion

TbMnO₃

- Mise en évidence du contrôle de la fréquence des électromagnons par un champ électrique
- Résultat qualitatif
- Nouvelle mesure à réaliser avec une électrode d'ITO

CuCrO₂

- Observation de modes non attendus
- Origine de ces modes à déterminer
- Nouvelles mesures à réaliser avec d'autres longueurs d'ondes à basse énergie

Conclusion 27