Experimental and numerical study of the low temperature behaviour of LiYbF₄

Aurore Finco

Laboratory for Quantum Magnetism, École Polytechnique Fédérale de Lausanne

September 6, 2013

うして ふゆう ふほう ふほう うらつ

1

Outline

Introduction

The LiREF₄ system

Crystalline and ordered structures Hamiltonian

Numerical simulations

Mean field approximation Monte Carlo calculation Classical model and algorithm Results

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @

Experiment

Setup Susceptometer Dilution refrigerator Phase diagram

- RE = Rare Earth ions
 - ▶ magnetic : Yb, Ho, Er, Gd, Tb

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

▶ non magnetic : Y

- RE = Rare Earth ions
 - ▶ magnetic : Yb, Ho, Er, Gd, Tb

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- ▶ non magnetic : Y
- Dipolar coupled quantum magnets.

- RE = Rare Earth ions
 - ▶ magnetic : Yb, Ho, Er, Gd, Tb
 - ▶ non magnetic : Y
- Dipolar coupled quantum magnets.
- Possible apparition of both ferromagnetic (LiHoF₄) and antiferromagnetic (LiErF₄, LiYbF₄) order.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- RE = Rare Earth ions
 - ▶ magnetic : Yb, Ho, Er, Gd, Tb
 - non magnetic : Y
- Dipolar coupled quantum magnets.
- Possible apparition of both ferromagnetic (LiHoF₄) and antiferromagnetic (LiErF₄, LiYbF₄) order.
- Disordered systems with apparition of a spin glass phase:
 - Dilution of the magnetic moments with non magnetic Y ions

うして ふゆう ふほう ふほう うらつ

 Mixing of several RE ions with different anisotropies (LiHo_{1-x}Er_xF₄ or LiHo_{1-x}Yb_xF₄ for instance)

Crystalline structure of LiREF₄

The Bi-Layered AntiFerroMagnetic (BLAFM) ordered structure

$$\mathcal{H}= \mathcal{H}_{ ext{single ion}}+\mathcal{H}_{ ext{interactions}}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

・ロト ・ 四ト ・ 日ト ・ 日 ・

・ロト ・ 四ト ・ モト ・ モト

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

6

The crystal field

7

- Electric field created by the charge distribution around the ion
- Responsible for the magnetic anisotropy

$$\mathcal{H}_{cf} = \sum_{i} \sum_{lm} B_l^m \hat{O}_l^m (J_i)$$

	LiYbF ₄	LiErF ₄	LiHoF ₄
$10^3 B_2^0$	663 ± 80	60.23	-60.0
$10^3 B_4^0$	12.5 ± 4.5	-0.12	0.350
$10^3 B_4^4(c)$	102 ± 41	-4.33	3.60
$10^5 B_6^0$	-62 ± 73	-0.19	4.0
$10^3 B_6^4(c)$	-16.0 \pm 1.7	-0.085	0.070
$10^6 B_6^4(s)$	0	-22.7	9.8

The crystal field

- Electric field created by the charge distribution around the ion
- Responsible for the magnetic anisotropy

$$\mathcal{H}_{cf} = \sum_{i} \sum_{lm} B_l^m \hat{O}_l^m (J_i)$$

	LiYbF ₄	LiYbF ₄ (new)	LiErF ₄	LiHoF ₄
$10^{3}B_{2}^{0}$	663 ± 80	646.2	60.23	-60.0
$10^{3}B_{4}^{0}$	12.5 ± 4.5	15.3	-0.12	0.350
$10^{3}B_{4}^{4}(c)$	102 ± 41	116.5	-4.33	3.60
$10^5 B_6^0$	-62 ± 73	-68.6	-0.19	4.0
$10^{3}B_{6}^{4}(c)$	-16.0 ± 1.7	-15.2	-0.085	0.070
$10^6 B_6^4(s)$	0	0	-22.7	9.8

Mean field approximation

Fluctuations are neglected and effective mean fields are introduced :

$$ec{h}^i_{ ext{eff}} = \sum_{j=1}^4 ilde{D}_{ij} \langle \mu_B \ \mathbf{g}_{L_j} \ ec{J_j}
angle$$

Hamiltonians decoupled for each site :

$$\mathcal{H}_{dip}^{\mathrm{MF}} = \sum_{i=1}^{4} g_{L_i} \ \mu_B \ ec{J_i} \cdot ec{h}_{\mathrm{eff}}^i$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Algorithm :

- Computation of \tilde{D}_{ij}
- Initialization of the moments $\langle J_i
 angle$
- Computation of h_{eff}^i for the current configuration
- Diagonalization of $\ddot{H}_i^{
 m MF}$ and update of $\langle ec{J}_i
 angle$
- Evaluation of $\Delta = \sum_{i=1}^{r} |\langle J_i \rangle^{new} \langle J_i \rangle^{old}|$

Monte Carlo calculation: the quantum effective model

The classical effective model

- \blacktriangleright 2 parameters: α and β
- Classical moment: $\vec{J_{eff}} = \langle \alpha, \beta | \vec{J} | \alpha, \beta \rangle$

Distribution of θ

The classical effective model

- \blacktriangleright 2 parameters: α and β
- Classical moment: $\vec{J_{eff}} = \langle \alpha, \beta | \vec{J} | \alpha, \beta \rangle$

Distribution of θ

Critical exponents

 $C \propto |T - T_N|^{-\alpha}$ $J_{xy}^{alt} \propto |T - T_N|^{\beta}$ $\chi \propto |T - T_N|^{-\gamma}$

Exponent		α	β	γ
Mean-field		0	0.5	1
3D	lsing	-0.11	0.32	1.24
	XY	0.01	0.35	1.32
	Heisenberg	0.12	0.36	1.39
2D	lsing	0	0.125	1.75
	XY/h4		0.1-0.25	
	LiErF ₄ (at T_N)	0.28 ± 0.04	0.15 ± 0.02	0.82 ± 0.04
	$LiErF_4$ (at H_c)		0.31 ± 0.02	1.44 ± 0.2

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

11

(日) (四) (三)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

•	T_N	= 127 mK	Exp: 373 mK
•	H _C	= 0.5 T	Exp: 0.4 T
•	α_{FDT}	= 0.33	Exp: 0.28

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

ж

Specific heat

•	T_N	= 127 mK	Exp: 373 mK
•	H _C	= 0.5 T	Exp: 0.4 T
•	α_{FDT}	= 0.33	Exp: 0.28
•	α	= 0.27	Exp: 0.28

æ

Order parameter

•	T_N	= 127 mK	Exp: 373 mK
•	H _C	= 0.5 T	Exp: 0.4 T
•	α_{FDT}	= 0.33	Exp: 0.28
•	α	= 0.27	Exp: 0.28
٠	β	= 0.15	Exp: 0.15

・ロト ・個ト ・モト ・モト

æ

${\sf Susceptibility}$

•	T_N	= 127 mK	Exp: 373 mK
•	H _C	= 0.5 T	Exp: 0.4 T
•	α_{FDT}	= 0.33	Exp: 0.28
•	α	= 0.27	Exp: 0.28
•	β	= 0.15	Exp: 0.15
•	γ	= 0.91	Exp: 0.82

(日) (同) (日) (日)

æ

Wrong CF parameters !

 $T_N = 34.4 \text{ mK} \text{ Exp: } 128.6 \text{ mK}$

イロト イヨト イヨト

3 N 3

Wrong CF parameters !

Quantum phase transition

 $T_N = 34.4 \text{ mK}$ Exp: 128.6 mK $H_C = 25 \text{ T}$ Exp: 0.48 T

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

32

Wrong CF parameters !

Specific heat (FDT)

T_N = 34.4 mK Exp: 128.6 mK
 H_C = 25 T Exp: 0.48 T

(日) (四) (日) (日)

ж

= 0.25

 α_{FDT}

Monte Carlo simulation of LiYbF₄

Wrong CF parameters !

Specific heat

 T_N = 34.4 mK H_C = 25 T Exp: 0.48 T

イロト イポト イヨト イヨト

$$\alpha_{FDT} = 0.25$$

= 0.28 α

Exp: 128.6 mK

э

Wrong CF parameters !

Order parameter

 $T_N = 34.4 \text{ mK}$ $H_C = 25 \text{ T}$

$$\alpha_{FDT} = 0.25$$

$$\alpha = 0.28$$

 β = 0.18

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Exp: 128.6 mK Exp: 0.48 T

ж

Wrong CF parameters !

Susceptibility

(日) (四) (日) (日)

ж

AC susceptibility measurements

$$\chi' = \frac{\omega}{\mu_0 H_{a0} \pi} \int_{0}^{\frac{2\pi}{\omega}} \langle B \rangle \cos(\omega t) dt - 1$$
$$\chi'' = \frac{\omega}{\mu_0 H_{a0} \pi} \int_{0}^{\frac{2\pi}{\omega}} \langle B \rangle \sin(\omega t) dt$$

The dilution refrigerator

Measurement of the temperature

- Thermometer: thick film of RuOx
- Calibration with 13 superconducting references and a paramagnetic salt.

Critical field and temperature

17

Field scans

イロト イロト イヨト イヨト

æ

18

Phase diagram

Future work

▶ Monte Carlo simulation for LiYbF₄ with the new parameters

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Study of the disordered compounds LiHo_{1-x}Yb_xF₄
 - Monte Carlo simulation
 - Measurement of the T_C -x phase diagram